
US008341751B2

(12) United States Patent (10) Patent N0.: US 8,341,751 B2
Wilson (45) Date of Patent: Dec. 25, 2012

(54) SOFTWARE LICENSE MANAGEMENT 7,484,103 B2 * Woo et a1. 713/189
7,752,138 B1* Dean et a1. 705/59

_ . 7,774,281 B2 * Okamoto et a1. 705/59
(76) Inventor. Kelce S. Wilson, Murphy, TX (US) 7,809,648 B2 * Misra et a1‘ 705/59

8,175,978 B2 * E d h 705/59

(*) Notice: Subject to any disclaimer, the term of this 2003/0120938 A1 * 1Vi1ul1)or 713/190
patent is extended or adjusted under 35 2005/0044397 A1* Bjorkengren .. 713/200
U_S_C_ 154(1)) by 1165 days_ 2006/0080654 A1 * Shelton 7l7/l73

2006/0136745 A1* Taylor 713/187

_ 2007/0006150 A9 * Walmsley 717/120

(21) APP1~ NO" 11/964,682 2007/0033419 A1 * Kocher et a1. .. 713/193
_ 2008/0148060 A1* Thorell 713/187

(22) Flledi Dec- 26, 2007 2009/0228982 A1 * Kobayashi 726/26
2009/0228984 A1 * Sterin 726/26

(65) Prior Publication Data 2010/0211945 A1* Doui 717/176
2010/0228673 A1* Pesl 705/54

US 2011/0167498 A1 Jul. 7, 2011 _ _
* cited by exammer

51 I t. C].
() Gn06F 7/04 (2006 01) Primary Examiner * Thu Ha Nguyen
(52) us. Cl. 726/26; 726/22; 726/23; 726/24; (74) “WW Age”! or Firm * Kelce 3- Wilson

726/25; 713/187; 713/189; 713/193; 717/168;
717/169;717/170; 717/173; 717/174; 711/164 (57) ABSTRACT

(58) Field of Classi?cation Search 726/2, 4, A method Of managing a Software license Comprises loading
726/6’ 26’ 30’ 22’ 23, 24, 25; 717/168’ 169, a software program into Volatile memory, obtaining authori
717/1734 78; 711/164; 713/187’ 189E193; zation data, modifying a portion ofthe Volatile memory relied

380/287 upon by the program in accordance With the authorization
See application ?le for Complete Search history data, executing the program, and causing the modi?cations to

be deleted from the Volatile memory. In some embodiments,
(56) References Cited selection criteria compared With the authorization data does

U.S. PATENT DOCUMENTS

5,490,216 A 2/1996 Richardson
6,411,941 B1 6/2002 Mullor
7,069,595 B2* 6/2006 Cognigniet a1. 726/26

Obtain authorization data

m

not contain information corresponding to all of the content of
the authorization data, thereby denying a softWare attacker
the bene?t of identifying and exploiting the selection criteria.

400

Success? N X
m

Y 401

Compare data with criteria
M

Match? X
E

402
Y L.

Modify software with data Fail
&

Modify software using
test criteria 403

Execute modified software

E

1
Delete modified software
files after session @

11 Claims, 9 Drawing Sheets

US. Patent Dec. 25, 2012 Sheet 1 of9 US 8,341,751 B2

FIG. 1

(Prior Art)

100
Obtain authorization data é

M

Success?

m

Y

Compare data with criteria
M

Match? N

g

Y

Execute: software: Fail

M Q

US. Patent Dec. 25, 2012 Sheet 2 of9 US 8,341,751 B2

FIG. 2

Obtain authorization data 6200
M

Success? N x
Q

Y
201

Compare data with criteria
M

Match? N X
m 202

\j

Y if '
Execute software Fail

E m

US. Patent Dec. 25, 2012 Sheet 3 of9 US 8,341,751 B2

FIG. 3

Obtain authorization data 6300

Success?

m

Y

Compare data with criteria
M

Match?

"J

Y

Modify software with data Fail
@ 1 U)

Execute modified software

E

l
Delete modified software
files after session @

US. Patent Dec. 25, 2012 Sheet 4 of9 US 8,341,751 B2

FIG. 4

Obtain authorization data 400

m é

Success? N x
E

Y 401
__J

Compare data with criteria
M

Match? N x
Iii

402
Y

7

Modify software with data Fail
E Q

V

Modify software using
test criteria @

Execute modified software

E

l
Delete modified software
files after session E

US. Patent Dec. 25, 2012 Sheet 5 of9 US 8,341,751 B2

FIG. 5

Obtain a plurality of data 500

candidates @ é

Success?

E

Y
Obtain selection criteria
from plurality @

Select candidate using
criteria M

l 7
Modify software using Fail
selected data E Q

l
Execute modified software
with capability determined
by criteria and candidate

E

Y

Delete modified software
files after session @

US. Patent Dec. 25, 2012 Sheet 6 of9

FIG. 6

Obtain software to protect

@

if
Determine desired version
capability Q

l
Obtain modification data

@

l
Determine selection criteria

@

l
Change the software

@

Another?

Distribute selection criteria,
changed software, and
candidate data

@

US 8,341,751 B2

600

US. Patent US 8,341,751 B2

700

CPU

M

Dec. 25, 2012 Sheet 7 0f 9

FIG. 7

Volatile Memory 7_Ol

Software Launcher

M M

Selection Modification
Module M Module M

Plurality of
criteria m

Storage m

Plurality of authorization
data candidates M

US. Patent Dec. 25, 2012 Sheet 8 of9 US 8,341,751 B2

FIG. 8
800

Launcher

Q

Encryption shell u

Software M

80221
802b

802C

802d

US. Patent Dec. 25, 2012 Sheet 9 of9 US 8,341,751 B2

FIG. 9

900

Plurality of criterion m Plurality of authorization m
data candidates

901b L 90321

L 90%
9020
‘J

i, 9030

i, 903d

US 8,341,751 B2
1

SOFTWARE LICENSE MANAGEMENT

TECHNICAL FIELD

The invention relates generally to computer security, and
more particularly, to software license management and anti
piracy software protection.

BACKGROUND

Software license management systems typically obtain
authorization data from a user who wishes to use the software,
for example, by requesting a password, searching for a dongle
coupled to the computer, or a speci?c media disk in a drive,
scanning a ?ngerprint, or otherwise obtaining data from a
security token. When the license management system then
compares the authorization data, or else the result of an algo
rithm operating on the authorization data, for example a hash
function, with security criteria. If there is a match, the license
management system launches execution of the protected soft
ware. If there is no match, the license management system is
supposed to deny access to the protected software.

Unfortunately, there is a common software cracking tech
nique, known as “branch jamming”, in which the critical
decision point, often a conditional jump instruction, in the
security system is identi?ed and changed. Possible changes
include replacing the conditional jump with an unconditional
jump or else a no operation (NOP) instruction. This change
defeats the intentions of the software security programmer,
and permits access to the protected software without the
proper authorization data. This type of software attack is
often quite effective when the software license management
system and the protected software both reside on a computer
system under the control of the attacker.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven
tion, reference is now made to the following descriptions
taken in conjunction with the accompanying drawings, in
which:

FIG. 1 illustrates a ?ow diagram for a prior art method for
software license management;

FIG. 2 illustrates a branch jamming attack;
FIG. 3 illustrates a ?ow diagram for an improved software

license management method;
FIG. 4 illustrates another software attack;
FIG. 5 illustrates a ?ow diagram for a further improved

software license management method;
FIG. 6 illustrates a ?ow diagram of a method for protecting

software;
FIG. 7 illustrates an embodiment of a software license

management system;
FIG. 8 illustrates an embodiment of protected software;

and
FIG. 9 illustrates a notional representation of license man

agement data.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates a ?ow diagram for a prior art method 100
for software license management. A prior art system obtains
authorization data in block 101, for example a password, a
?ngerprint, and/ or data from a dongle, a CD, or other security
token. In decision block 102, the system determines whether
any data has been obtained. If not, method 100 goes to a fail
state in block 103, for example displaying a message stating

20

25

30

35

40

45

50

55

60

65

2
“password not entered”. If however, data has been obtained,
the obtained data is compared with authorization criteria in
block 104. This may be a simple byte by byte comparison, or
else the authorization data may be processed, for example by
hashing or application of another algorithm, and the result is
then compared with the criteria. Alternatively, the criteria
may be processed, and the processing result is used for the
comparison. Typically, the authorization test criteria used for
comparing against the authorization data is available to the
program separately from entry of the authorization data, to
enable the license management system to make an indepen
dent determination of the correctness of the authorization
data. In decision block 105, the comparison result is deter
mined, and if there is no match, i.e. the authorization data is
incorrect, method 100 goes to a fail state in block 103. This
second possible entry into fail state 103 may be a different
block of software, for example a message stating “password is
incorrect”. If there is a match, as determined in decision block
105, the prior art method 100 results in the execution of the
protected software in block 106. Method 100 may be inte
grated into the protected software, or else may be accom
plished by a separate launcher.

FIG. 2 illustrates a branch jamming attack in altered
method 200. Software attacks are described in “Introduction
to Software Protection Concepts” by Kelce Wilson, in Intel
lectual Property Today, August 2007, the entire disclosure of
which is hereby incorporated by reference. Similar to method
100, method 200 attempts to obtain authorization data in
block 101 and checks for success in decision block 102.
However, an attacker has modi?ed the protected software or
launcher, in accordance with a branch jamming attack
described previously. That is, a conditional jump imple
mented as part of decision block 102 has been modi?ed to be
either a NOP or an unconditional jump, thereby introducing
an alternative path 201 to execution block 106, preventing
method 200 from going into a fail state in block 103. In some
situations, the entire section of the software related to check
ing for authorization data may be NOP’d out. Alternatively,
incorrect data may be injected into the memory location used
to store a comparison result, the instructions may be changed
to calculate a mistaken value, or else a jump condition may be
inverted, for example by changing a “jump if equal” (J E) to a
“jump if not equal” (JNE). The branch jamming attack at
decision block 102 enables execution of the protected soft
ware without entering or providing any authorization data.
Alternatively, or in addition, the attacker may target the match
decision in block 105, introducing alternative path 202 to
route method 200 into execution block 106 instead of a fail
state in block 103, when incorrect authorization data is
entered or provided.
US. Pat. No. 6,411,941, METHOD OF RESTRICTING

SOFTWARE OPERATION WITHIN A LICENSE LIMITA
TION (’941 patent), discloses a prior art software license
management system that operates similarly to method 100 in
FIG. 1. The ’941 patent teaches that license decision data is
obtained from the computer basic input/output system
(BIOS) and also from a remote license bureau 7. Independent
of where the data is stored, processed, or how it is obtained,
the systems and methods taught in the ’941 patent are vulner
able to branch jamming attacks, similar to the one shown in
FIG. 2. Speci?cally, column 2, lines 19-20 and 56-59 describe
the operation of a license veri?er that searches for a match,
and then either launches the protected software or responds in
another manner. The portions of the license veri?er that deter
mine the jump conditions or carry out the conditional jump
may be altered to permit execution of the protected software,
even if no license data is stored in the BIOS and/ or the remote

US 8,341,751 B2
3

license bureau 7 has never been contacted to request any
license data. In the teachings of the ’941 patent, the data
stored in the BIOS may be considered either authorization
data or test criteria, since the methods taught indicate merely
determining a match betWeen the data in the BIOS and date
obtained in another manner. In some systems, the designation
of authorization data versus test criteria may be arbitrary.

This vulnerability is at least partially addressed by US.
patent application Ser. No. 10/300,905, METHOD OF
SECURING SOFTWARE AGAINST REVERSE ENGI
NEERING (’905 application). The ’905 application teaches
substituting central processing unit (CPU) instructions With
tokens, thereby placing the softWare into a state in Which it
Will not function properly Without compensating for the sub
stitutions. Some of the methods taught include micropatching
the CPU to respond to the token With some desired function
ality, and manipulating an execution pointer based on an
external data structure in response to a token. Unfortunately,
the tokens may be easily identi?able using a string search of
the executable program, thereby ?agging portions of the pro
gram that an attacker may need to modify for a branch jam
ming attack.
One scenario of attack is that an attacker obtains a single

license for using a copy of the softWare and runs both a
licensed version of the softWare and an unlicensed version of
the softWare Within stealthy debugging environments, per
forming run traces. In a run trace, executed instructions and
certain memory changes are recorded. HardWare emulators
and some softWare based virtualization systems provide
stealthy debugging environments that may avoid detection by
most debugging detection methods. The resulting run traces
may then be compared side by side to enable determination
the functionality replaced by the tokens. The functionality is
likely to be fairly simple, at least in the case for micropatch
ing. An attacker can then create an equivalent of the function
ality displaced by the tokens. Only the ?rst token encountered
needs to be reverse engineered. Subsequent identical tokens
in the same softWare may be patched around using a relatively
simple string search and replace With jumps to the attacker’s
equivalent routines. Further, Whenever other softWare is
encountered that uses a similar token system, either a differ
ent type of program or else a copy of the original program on
a different computer, the tokens may be replaced With jumps
to the recreated functionality, using a simple string search and
replace. What an attacker learns by attacking one program
protected by tokens facilitates attack against any other soft
Ware using a similar token protection scheme.

Thus, in some situations, the tokens may actually facilitate
reverse engineering and tampering by draWing an attacker’s
attention to very same critical decision making steps in the
license management system that the softWare developer
Wanted to protect. To the extent necessary to understand the
claims folloWing, the disclosures of both the ’941 patent and
the ’905 application are incorporated by reference. HoWever,
any statements regarding the effectiveness of the systems and
methods disclosed in the ’941 patent and the ’905 application
are speci?cally disagreed With. No softWare security system,
including the one presented herein is impervious to attack.
One solution to the vulnerabilities of the ’941 patent and

the ’905 application is to replace the softWare instructions or
data relied upon by the softWare With different values, Which
are not identi?able as tokens. That is, the changes are not
changes to predetermined, limited set of tokens that could be
found by a search and replace, or are otherWise identi?able by
their value or content, but rather use possibly random values
or else different values that result in less capable softWare. For
some types of changes, an attempt to execute softWare With

20

25

30

35

40

45

50

55

60

65

4
the changes in place Will result in a computer crash, but for
other types of changes, the softWare may operate properly to
completion, but With less precise data or reduced functional
ity. The repair of the softWare back to its more capable state
can then be accomplished, for example, by a launcher iden
tifying the bytes to be repaired using their locations. The
information used in the repair may include the license man
agement information, Whether locally stored, such as in ?rm
Ware, obtained remotely, such as from a license bureau, typed
in by a user, or obtained from a storage device coupled to the
computer. For example, a security token, such as a dongle,
may provide a license key, parts of Which identify the loca
tions of bytes in ?les to be changed, and parts of Which
identify the changes to make. In some situations, the
addresses and restoring data may not be readily apparent from
the license information, but rather may be produced by pass
ing the license information through an algorithm.
By changing softWare instruction bytes or bytes of data

relied upon by the softWare for proper execution, a protected
softWare program can be rendered less capable or even inop
erable. By using a softWare license management system, for
example a launcher, to modify (repair) the changed bytes With
information derived from license data, prior to launching the
protected softWare, a branch jamming attack Will result in the
launch and execution of damaged, less capable softWare. The
result may be reduced operability or even a crash of the

computer process. The protected softWare, possibly including
a launcher, is likely to be stored on a computer readable
medium, such as for example magnetic media, optical media,
volatile memory, and non-volatile memory. The protected,
changed softWare may be stored in permanent or non-volatile
memory. HoWever, the modi?ed (repaired) softWare and data,
Which is the version to be executed, should only be Written to
volatile memory and deleted from that memory as soon as

practical after execution, to minimize the chance of a memory
grab by a softWare attacker.
One embodiment of an improvement to the systems and

methods taught in the ’941 patent and the ’905 application
includes modifying, using information derivable from the
license record, portions of the selected program in volatile
memory not identi?ed by tokens and/or data relied upon by
the selected program, executing the selected program, and
causing the selected program to be deleted from volatile
memory. This requires the bytes to be modi?ed to have pre
viously been changed from one state to a state that reduces the
capability of the softWare. The data relied upon by the
selected program may be data constants, jump addresses,
names of auxiliary ?les or dynamic link libraries (DLLs),
case variables, user interface commands and/or other infor
mation used in program execution control. Another embodi
ment of an improvement to the systems and methods taught in
the ’941 patent and the ’905 application includes modifying
portions of the softWare at bytes not identi?ed by tokens; and
causing the modi?ed program to be deleted from volatile
memory. The purpose of causing the modi?ed program to be
deleted from volatile memory is to minimize the chance of a
memory grab by an attacker, Which could result in the modi
?ed program being stored in its more capable state and avail
able for execution Without the need for the repair procedure.
Causing the modi?ed program to be deleted from volatile
memory may be as simple as closing the process, so that the
operating system (OS) can be expected to purge the volatile
memory. HoWever, further actions may be taken, such as
deleting any copies of the modi?ed program from sWap
space, preventing the OS from Writing copies of the modi?ed

US 8,341,751 B2
5

software to virtual memory, or overwriting any memory or
storage space that had contained the modi?ed program with
other data.

FIG. 3 illustrates a ?ow diagram for an improved software
license management method 300. Some embodiments of
method 3 00 may be similar to method 1 00, from obtaining the
authorization data in block 101 through determining whether
the authorization data matches the authorization criteria in
decision block 105. However, in block 301, the software, or
data bytes relied upon by the software, are modi?ed in volatile
memory. This modi?cation improves the capability of the
software, either restoring full capability, or possibly restoring
only part of the capability, depending on the particular license
granted to the user. For example, one user may have only paid
for partial capability, and so only those portions of the soft
ware are repaired, whereas another user may have paid for full
capability on a different computer. The number of bytes
modi?ed in block 301 will typically be small compared to the
size of the software program and associated data ?les stored
on permanent media, and should include critical control ?ow
instructions and/or data used in important calculations or
control. Thus, the software program, as permanently stored, is
likely to contain mostly functioning software that is impaired
at critical points.

This form of protection should be distinguished from
encryption shells, in which data or instructions are stored in
an encrypted state and decrypted at some point prior to execu
tion. For typical encryption shell protection, the decryption
process changes a predetermined set of bytes from an
encrypted state, which likely has no similarities to software
instructions or usable data, according to a predetermined
algorithm, based on a key entered by the user or accessible to
a decrypting launcher. In some embodiments, the modi?ca
tion in block 301 includes replacement of bytes, which is not
decryption. In some embodiments, the modi?cation in block
301 includes substitution of a set of data and instructions that
would allow the program to operate, although in a less
capable state, with a second set that allows the program to
operate with more capability. For example, the mantissa of a
?oating point value may be changed to reduce signi?cant
?gures of a value used in a calculation. This is not feasible
with mo st good encryption algorithms, because the encrypted
bytes would not likely comprise operable instructions and
data. In some embodiments, the modi?cation information
used in block 301 includes an indication of the location of
modi?cations to be made in volatile memory, which is infor
mation not included in decryption keys, and is not predeter
mined. In some embodiments, the modi?cation information
used in block 301 includes an indication of the manner of
making modi?cations, whether simple replacement or a
Boolean operation, which is essentially a selection of an
algorithm, and is also not information which is included in
decryption keys. However, it should be understood that block
301 may use decryption as part of the set of modi?cations. In
block 302, the software is executed, using modi?ed instruc
tions and/ or data. In block 303, the modi?cations are deleted
from volatile memory along the program. This type of pro
tection complicates matters for a software attacker, and thus
provides an additional level of protection over the prior art
method 100 shown in FIG. 1.
One potential attack is illustrated in FIG. 4. An attacker has

attempted a branch jamming attack at both decision blocks
102 and 105 by introducing alternate paths 40 and 402. There
fore, the absence of authorization data, or the entry of incor
rect authorization data does not result in a fail state in block
103. However, the attacker has learned that merely bypassing
the authorization data veri?cation resulted in the execution of

20

25

30

35

40

45

50

55

60

65

6
software with ?awed data and/or instructions. That is, the
attacker has ?gured out that the software and/or data ?les
need to be modi?ed in order to run the software with the
desired capability. The attacker has also reverse engineered
the license management system to identify not only where in
the launcher the authorization data is compared with the
authorization test criteria, but also has identi?ed the content
of the test criteria.

For example, if the authorization data comprises a pass
word, which is hashed prior to being tested for validity, the
authorization test criteria may be the hash result of the correct
password. The authorization test for a match can then be a
simple byte by byte comparison for equality between the test
criteria and a hash of the password. Some poorly designed
hash functions may be reversible, meaning that the password
can be calculated using the test criteria. However, even for
one-way hash functions, if the password is not very long, a
brute force attack, which hashes candidate passwords and
compares the results against the test criteria, could allow
identi?cation of the password within a timeframe that is
acceptable to the attacker. Alternatively, if any license data is
encrypted, the attacker may be able to watch the encryption or
decryption process in memory within a stealthy debugging
environment, obtain the key, and then use the key to decrypt
any information the attacker desires. The attacker can then
watch the software modi?cation process in a stealthy debug
ging environment, learn what modi?cations are needed, and
create a routine to make the modi?cations independently of
the need for entering the authorization data, as indicated in
block 403. This can attack can be accomplished without the
attacker having access to the proper authorization data.

So unfortunately, the license management system’s access
to the test criteria, independent of the proper authorization
data, can be leveraged by an attacker to learn the content of the
authorization data, at least for systems operating in accor
dance with prior art method 100, and the teachings of in the
’941 patent and the ’ 905 application. The attacker’ s version of
the software may then be distributed with a modi?cation or
additional program that carries out the function of block 403,
which permits execution of the software with repaired
instructions and/ or data in block 302, even without access to
the proper authorization data.

FIG. 5 illustrates a ?ow diagram for a further improved
software license management method 500, in which the use
of test criteria may be abandoned in favor of the use of
selection criteria. Method 500 denies the attacker the ability
to leverage test criteria to learn the information contained in
the proper authorization data, because there is not a one-to
one match between any test criteria and the proper authoriza
tion data. That is, an attacker having full knowledge of any
selection criteria, including the ability to decrypt it or reverse
any function used to generate it, has not learned the proper
authorization data. When there are differences between the
proper authorization data and selection criteria, then an attack
similar to the one shown in FIG. 4 may result in incorrect
modi?cation of the protected software in an equivalent of
block 403. Thus, since the selection criteria does not identify
exactly what authorization data is needed, full knowledge and
exploitation of the selection criteria does not provide all the
necessary information for repairing the protected software. A
protection scheme operating in accordance with an embodi
ment of method 500 does not betray the authorization data
contents by providing an indication of what a launcher needs.

In method 100 of FIG. 1, an attacker can operate according
to the following assumption: whatever authorization data
does not fail the authorization data veri?cation process,
which includes blocks 104 and 105, must be the proper autho

US 8,341,751 B2
7

rization data. If an attacker does not have the proper authori
zation data, and is attempting to ascertain it by reverse engi
neering software that operates according to method 100, tWo
categories of information are initially hidden from the
attacker: (1) data that must be provided, and (2) data that
should not be provided. Method 100 only leverages the ?rst
part of an attacker’ s uncertainty. Method 500 leverages both.

The principle that enables operating according to method
500 is that a user not only has control of What authorization
data is provided to a software license management system,
but also has control of What data is not provided. A check for
a match betWeen authorization data and test criteria may then
be replaced With selection from among potentially multiple
authorization data candidates to determine the one “closest”
to selection criteria, or the prevailing selection criteria, if
multiple selection criteria data sets are used during the selec
tion process. To launch the softWare With proper operation, a
user provides authorization data that is “close enough”ibut
not too closeito the selection criteria. This is because the
authorization validation process may select incorrect autho
rization data that is closer to the selection criteria than is the
proper authorization data. Distance may be measured in mul
tiple Ways, including the number of bits or bytes that are
similar, arithmetic differences, or other methods, including
Weighted differences betWeen portions of the data. Other
selection criteria, apart from distance may also be used.
By introducing the possibility that the selection process

could result in the selection of incorrect authorization data,
instead of the proper authorization data, a softWare attacker is
denied the full bene?ts of reverse engineering the authoriza
tion data selection process to learn all the secrets of What the
authorization data must be. Using protection in accordance
With method 500, even if an attacker learns all the secrets of
selection criteria, the attacker has learned something that is
close to the required data, but it is not the required data. In the
frameWork of this paradigm, any authorization validation
process that operates in accordance With method 100, by
running protected softWare after a mere equality matching
test betWeen purported authorization data and test criteria,
Which is available independently of the authorization data,
can be vieWed as a facilitating gift to a softWare attacker.

In the illustrated embodiment of method 500, a plurality of
authorization data candidates are obtained in block 501.
These authorization data candidates may be a plurality of data
sets in ?rmWare, in a dongle, on a media disk, in a Wireless
device, for example an inductively poWered Wireless device,
entered by a user, data derived from biometric data, or any
other data from a security token or purported by a user to be
authorization data. A launcher operating in accordance With
an embodiment of method 500 may obtain a data set from a
particular location identi?ed by the launcher, While another
launcher operating in accordance With another embodiment
of method 500 searches a user’s computer and certain sys
tems or media coupled to the user’s computer for data sets
having certain characteristics. In decision block 502, method
500 determines Whether authorization data candidates match
ing the characteristics have been obtained. This determina
tion may include a test of a partial match betWeen a data
candidate and a selection criteria data set. In block 503, a
plurality of selection criteria data sets is obtained, Which are
used for selecting a candidate from the plurality in block 504.
Block 503 may occur prior in time to block 501. For example,
multiple authorization data sets and selection criteria data sets
may be preloaded onto separate media, for example a dongle
may contain the candidates and a media disk may contain the
selection criteria. Alternatively, a single selection criteria may
be obtainable from a remote license bureau or be contained

20

25

30

35

40

45

50

55

60

65

8
Within a launcher. The closest pairing betWeen all possible
combinations of criteria With a candidate may identify the
selected candidate in block 504. For another example, a set of
selection criteria may be provided by a softWare developer for
a multiple of softWare packages provided by that developer,
including packages that a particular user may not yet have
purchased. Upon purchase of a license, the developer then
provides a set of multiple authorization codes on copy-pro
tected media such as a dongle, Which are pre-screened for
closer matches, to ensure that a proper selection can be
assured When the user attempts to operate the purchased
softWare.

In block 505, instructions and/or data in volatile memory,
Which are relied upon by the softWare, are modi?ed. The
modi?cations may include any of those described for block
301 for method 300 of FIG. 3. The information used to deter
mine the modi?cations comprises indications of the locations
of the bytes to be modi?ed, indications of the manner of
changing the bytes, and/or the speci?c bits used to change to
the bytes. The manner of change may be a replacement or a
Boolean operation, such as an exclusive or (XOR). For
example, the modi?cation data may comprise information
directing a launcher to (1) XOR the byte in volatile memory
that corresponds to byte 1000 of the stored executable ?le
With hex FA, (2) replace the byte in volatile memory that
corresponds to byte 1001 of auxiliary ?le “LIBIDLL” With
90.
The information used in determining the modi?cations in

block 505 should include information that is available only by
having access to the proper authorization data, and not from
having access only to selection criteria. In some embodi
ments, data from selection criteria may be used in addition to
What is determinable from the proper authorization data, but
Will not be all of the modi?cation information that is needed.
For example in some embodiments, the entire authorization
data is processed in order to determine modi?cation informa
tion in other embodiments, only portions are used, Which
include at least some portions of the authorization data that
are different than the selection criteria. In some embodiments,
the portions of the authorization data that is different from the
selection criteria may be processed to determine the needed
modi?cation information. In some embodiments, the differ
ences themselves betWeen the selection criteria and the
authorization data, such as a Boolean operation on the por
tions of difference, may be processed to determine the modi
?cation information. With this type of protection, an attacker
reverse engineering the selection criteria has no knoWledge of
the needed modi?cations, similar to the Way in Which some
one knoWing the details of an encryption algorithm cannot
decrypt data Without the proper key. The differences then
contain the secret data necessary to unlock the softWare func
tionality, and thus perform a role similar to an encryption key
for an openly-published encryption algorithm.

Other variations are also possible for method 500. For
example, the need for selection criteria could even be elimi
nated entirely, such that a launcher selects the ?rst data pro
vided as purported authorization data in block 504, makes the
modi?cations in accordance With the provided data, and the
protected program either operates correctly or else operates in
Whatever random manner is dictated by changes made
according to the ?rst data purported to be authorization data.
In other embodiments, after considering multiple data candi
dates and tWo or more may be selected, and the differences
betWeen the selected ones may be used to determine the
modi?cations. In this usage, “differences” betWeen the autho
rization information and the selection criteria includes means
differences in the compared information, Which may not be

US 8,341,751 B2
9

the original data, but instead may be processed data. For
example, if the authorization data is hashed prior to compari
son With the selection criteria, “differences” means differ
ences betWeen the hashed authorization data and the selection
criteria. Thus, due to the differences, the selection criteria
does not contain information corresponding to all of the con
tent of the authorization data.

In block 506, the softWare is executed, and is folloWed by
block 303 upon completion of the execution of the softWare
program. It should be understood that since method 500 uses
any purported authorization data set selected in block 504,
multiple data sets could repair the protected softWare to vary
ing degrees. For example, one authorization data set may
contain information necessary to repair all changes, Whereas
a second authorization data set may contain only enough
information to repair some but not all changes, and a third
authorization data set may contain information for repairing
different changes than does the second authorization data set.
A software developer producing software that operates in
accordance With method 500 may, for example, produce mul
tiple dongles that unlock differing sections of a particular
softWare title. Since the portions unlocked are determinable
by the selection of authorization data using selection criteria,
controlling either the selection criteria or authorization data
available for use by an embodiment of method 500 then
enables control of the softWare capability.

FIG. 6 illustrates a How diagram of a method 600 for
protecting softWare. In block 600, the softWare to be protected
is obtained by a softWare defender, Which may be the primary
softWare developer or a contracted protection services pro
vider. In block 602, desired changes to the bytes are deter
mined, Which Will enforce the desired license control but yet
permit a user With certain license terms to be able to operate
the softWare in accordance With method 500. Modi?cation
data is obtained in block 603, by any number of means, such
as the generation of a random number or processing user data
or software data With an algorithm. Other potential, but incor
rect authorization data sets may also be determined or gener
ated in order to facilitate determining selection criteria. In
block 604, selection criteria is determined that Will likely
result in selection of the proper authorization data from
among a set of potential authorization data sets that the soft
Ware defender expects are likely to be presented to a launcher
program by a potential user. It is important to note that the
developer’s assumptions may be incorrect, and the launcher
may improperly select incorrect authorization data, even
When operating on a computer system for Which an autho
rized user has properly licensed the softWare. This possibility,
although it contributes to poor customer relations When it
occurs, is a driver for the enhanced security provided by
method 500. HoWever, the selection criteria may be so
detailed and unique that this possibility is rendered excep
tionally remote. Further, as described in relation to FIG. 9,
this possibility can be addressed With a diagnostic utility.
As a comparison, consider the use of public key cryptog

raphy. There is no central entity that controls the generation of
public key pairs. Anyone running a key generation program
could accidentally generate a key pair that is identical to that
of another user. And yet, public key cryptography is Widely
used, even though this possibility exists. This is because the
possibility of such an accident is so loW that it has been
accepted. The authorization data and selection criteria gen
eration process can be tailored to make the data sets long
enough and unique enough that another data set randomly
available on a user’s computer or on anything coupled to the
user’ s computer is highly unlikely to be selected ahead of the
proper authorization data. This can be accomplished simul

20

25

30

35

40

45

50

55

60

65

10
taneously With retaining su?icient differences betWeen the
authorization data and the selection criteria to keep the modi
?cation data reasonably secret.

Generation of the data sets may be independent, or one set
may be generated from the other by introducing differences.
For some embodiments, When tWo data sets are generated,
either one may be used as authorization data or selection
criteria. In some systems, designation of authorization data
versus selection criteria may be arbitrary. In some embodi
ments, selection criteria may be generated by truncating
authorization data. The authorization data and its correspond
ing selection criteria form an authorization pair, Which con
tains the information a launcher needs to restore functionality.
The softWare and/or data relied upon by the softWare is

changed in block 605 such that corresponding modi?cations
in block 505 of method 500 result in the functionality deter
mined in block 602. In decision block 606, method 600 deter
mines Whether another combination of functionality, autho
rization data and selection criteria is needed for a different
distribution the softWare. If so, method 600 returns to block
603. The relevant license data packages are distributed in
block 607.

FIG. 7 illustrates an embodiment of a software license
management system 700, Which can operate in accordance
With method 500 or, in a modi?ed embodiment, can operate in
accordance With method 300. System 700 comprises volatile
memory 701 coupled to a CPU 702 and storage 703. In some
embodiments, volatile memory 701 is coupled to storage 703
through CPU 702. In the illustrated embodiment softWare 704
has been loaded into volatile memory 701, although it may
have been previously stored on permanent media in a pro
tected state. Launcher 705, also in volatile memory 701 is
executed by CPU to modify softWare 704 and possibly
decrypt at least portions of softWare 704. In some embodi
ments, launcher 705 is coupled to and distributed along With
softWare 704, although in other embodiments, launcher 705
and software 704 are separate packages. Selection module
706 is used by launcher 705 to identify authorization data, and
in some embodiments may be contained Within launcher 705.
Replacing selection module 706 With a match check Would
cause system 700 to operate more compatibly With method
300 than With method 500. Modi?cation module 707 per
forms the modi?cations described for block 505 of method
500 or block 301 of method 300. In some embodiments,
modi?cation module 707 is contained Within launcher 705,
although in other embodiments, it may be a separately-ex
ecuted process.

In the illustrated embodiment, a plurality of selection cri
teria data sets 708 is shoWn already residing in volatile
memory 701. For some embodiments of system 701, the
plurality may instead be a single data set. For some embodi
ments of system 701, data sets 708 may be contained Within
launcher 705, Whereas for other embodiments, at least some
of data sets 708 may be imported into volatile memory 701
from another source, such as another computer system, a
media drive or non-volatile memory coupled to CPU 702.
Also in the illustrated embodiment, a plurality of authoriza
tion data candidates 709 is shoWn residing in storage 703.
Storage 703 comprises a computer readable medium, such as
a media disk, magnetic or optical, a dongle or other non
volatile memory, ?rmWare, BIOS or extensible ?rmWare
interface (EFI). Some embodiments of system 700 provide
for one or more of authorization data candidates 709 to be
entered by a user, for example by using a keyboard, biometric
reader, scanner, or other data input device.

FIG. 8 illustrates an embodiment of protected softWare
800. Protected softWare 800 includes launcher 705 coupled to

US 8,341,751 B2
11

software 704, which is wrapped with encryption shell 801. It
should be understood that in some embodiments, not all of
software 704 may be encrypted. Within software 704, por
tions 80211-80211 have been changed to reduce the capability
of software 704. Upon launcher 705 selecting the proper
authorization data candidate, one or more of portions 80211
8021! may be modi?ed, thereby at least partially restoring
operation of software 704.

FIG. 9 illustrates license management data in a notional
representation 900. Files that produce data in representation
900 may be stored on separate media or separate systems, but
need to be coupled to launcher 705, although not necessarily
simultaneously, in order to enable launcher 705 to properly
modify portions 8020-8021! of software 704. Plurality of
selection criteria data sets 708 comprises selection criteria
data sets 90111-901d. Plurality of authorization data candi
dates 709 comprises candidates 90211-902d. As illustrated,
candidates 90211-9020 are similar to selection criteria data set
901b, whereas candidate 90211 has some similarity to selec
tion criteria data set 90111. Differences 90311-9030 re?ect dif
ferences between selection criteria data set 9011) and candi
dates 90211-9020, respectively, and candidate 90211 has
difference 90311 from criteria data set 90111. It should be
understood that the graphical representation of differences
9030-9031! are notional, and that differences between binary
data sets can be measured and determined in multiple man
ners.

As illustrated, difference 9030 is the smallest, so that an
embodiment of method 500 of FIG. 5 is likely to select
candidate 9020 in block 504, if criteria data set 9011) was
obtained in block 503. However, if only criteria data set 90111
had been obtained in block 503, then candidate 9021! would
be selected. The possibility described earlier, in which
method 500 could potentially select incorrect authorization
data instead of proper authorization data, would occur if
candidate 90219 was actually the proper authorization data. In
such a case, difference 903b, rather than difference 9030
would furnish the best information for modifying protected
software. If candidate 9020 provides problems for the user,
the software developer may furnish a diagnostic utility to the
user that identi?es license management con?icts, and would
therefore identify the reasons for non-selection of candidate
90219. The user could then decide between deleting whatever
data produces candidate 9020, or else requesting a different
criteria and candidate pair.

Candidate 90211 could represent random data on the user’ s
computer or else a prior license. For example, a user may have
obtained a ?rst license with an initial capability from the
software developer, but then upgraded to a second license.
Candidate 90211 could then have been furnished by the devel
oper in order to facilitate the ?rst license, and candidate 9021)
would then have been furnished for the second license. In the
illustrated representation, since difference 90319 is smaller
than difference 90311, the license upgrade is automatically
granted by the candidate selection process, although for some
embodiments, the user may be instructed to delete any copies
of candidate 90311 to ensure that 9021) is the one selected. This
form of license management is different than systems in
which a software developer distributes a patch upon payment
of a license fee, to modify newly-licensed software. Such
license management systems typically modify a permanently
stored copy of the software in a non-volatile storage medium,
and thus only need to be accomplished once.

Although the present invention and its advantages have
been described above, it should be understood that various
changes, substitutions and alterations can be made herein

20

25

30

35

45

12
without departing from the spirit and scope of the invention as
de?ned by the appended claims. Moreover, the scope of the
present application is not intended to be limited to the par
ticular embodiments described in the speci?cation.
What is claimed is:
1. A method of managing a software license, the method

comprising:
loading a software program into volatile memory;
obtaining a plurality of authorization data candidates;
selecting authorization data from the plurality of authori

zation data candidates, wherein selecting the authoriza
tion data from the plurality of authorization data candi
dates comprises:
comparing the plurality of authorization data candidates

with a selection criteria that does not contain infor
mation corresponding to all of the compared informa
tion within the authorization data;

identifying a difference between the selection criteria
and each of the authorization data candidates; and

selecting the authorization data using the identi?ed dif
ference;

modifying a portion of the program in volatile memory
with the selected authorization data, wherein modifying
a portion of the volatile memory comprises replacing a
?rst byte with a second byte; and

executing the modi?ed program.
2. The method of claim 1 wherein the authorization data

comprises information indicating a location of the portion of
volatile memory to be modi?ed.

3. The method of claim 1 wherein the authorization data
comprises information indicating a manner of making the
modi?cations.

4. The method of claim 1 wherein modifying a portion of
the volatile memory comprises changing the program from a
?rst operable state to a second operable state.

5. The method of claim 4 wherein changing the program
from a ?rst operable state to a second operable state com
prises improving the capability of the program.

6. The method of claim 1 wherein executing the program
comprises launching the program with a launcher.

7. The method of claim 1 further comprising:
decrypting the program prior to the modifying.
8. The method of claim 1 wherein selecting the authoriza

tion data from a plurality of authorization data candidates
further comprises comparing the plurality of authorization
data candidates with a plurality of selection criteria.

9. The method of claim 1 wherein modifying a portion of
the volatile memory relied upon by the program in accor
dance with the authorization data comprises modifying a
portion of the volatile memory relied upon by the program in
accordance with the identi?ed difference.

10. The method of claim 1 further comprising:
selecting a byte of an initial software program, wherein the

selected byte comprises at least one selected from the list
consisting of:
a control ?ow instruction, data used in control ?ow, and

data used in a calculation; and
changing the byte from a ?rst value to a second value, such

that the modi?cation changes a corresponding byte in
volatile memory from the second value to the ?rst value.

11. The method of claim 1 further comprising:
generating an authorization pair comprising the authoriza

tion data and selection criteria, wherein the selection
criteria does not contain information corresponding to
all of the content of the authorization data.

* * * * *

