US008694473B2

a2 United States Patent 10) Patent No.: US 8,694,473 B2
Wilson (45) Date of Patent: *Apr. 8, 2014
(54) DATE-PROVABLE REGISTRATION SYSTEM 6,799,176 Bl 9/2004 Page
FOR PUBLISHED DOCUMENTS 7,058,628 Bl 6/2006 Page
7,269,587 Bl 9/2007 Page
. . 2002/0023220 Al 2/2002 Kaplan
(76) Inventor: Kelee S Wilson, Murphy, TX (US) 2002/0169971 A1* 11/2002 Asano et al. ...vvervioin. 713/193
)) o) 2003/0023847 Al 1/2003 Ishibashi
(*) Notice: Subject to any disclaimer, the term of this 2003/0028774 ALl* 2/2003 MeKaoooovrovrirrinrinn. 713/176
patent is extended or adjusted under 35 2003/0130032 A1 72003 Martinek
U.S.C. 154(b) by 0 days. 2003/0145206 Al 7/2003 Wolosewicz
2004/0080777 Al 4/2004 Smith
This patent is subject to a terminal dis- 2004/0230572 Al 11/2004 Omoigui
claimer. 2006/0041550 Al 2/2006 Bennett
2007/0174865 Al 7/2007 Jing
(1) Appl. No.: 13/561,062 2008/0091954 Al 4/2008 Morris
.No.: ,
OTHER PUBLICATIONS
(22) Filed: Jul. 29, 2012 o o .
Wikipedia, Timestamp, Feb. 27, 2007, http://en.wikipedia.org/wiki/
(65) Prior Publication Data Time__stamp, printed on Mar. 19, 2007, 3 pages.
US 2012/0293840 A1~ Nov. 22,2012 (Continued)
L Primary Examiner — Christyann Pulliam
Related U.S. Application Data Assistant Examiner — Fazlul Quader
(63) Continuation of application No. 12/954,864, filed on ~ (74) Attorney, Agent, or Firm — Kelce 8. Wilson
Nov. 27, 2010, now abandoned, which is a
continuation of application No. 12/637,748, filed on 7 ABSTRACT
Dec. 15, 2009, now Pat. No. 7,877,365, which is a A system and method are disclosed for rendering published
continuation of application No. 12/053,560, filed on documents tamper evident. Embodiments render classes of
Mar. 22, 2008, now Pat. No. 7,676,501. documents tamper evident with cryptographic level security
or detect tampering, where such security was previously
(51) Int.CL unavailable, for example, documents printed using common
GOG6F 7/00 (2006.01) printers without special paper or ink. Embodiments enable
(52) US.CL proving the date of document content without the need for
USPC ittt 707/687 expensive third party archival, including documents held,
(58) Field of Classification Search since their creation, entirely in secrecy or in untrustworthy
USPC et 707/687 environments, such as on easily-altered, publicly-accessible
See application file for complete search history. internet sites. Embodiments can extend, by many years, the
useful life of currently-trusted integrity verification algo-
(56) References Cited rithms, such as hash functions, even when applied to binary

U.S. PATENT DOCUMENTS

6,233,340 Bl 5/2001 Sandru
6,285,999 Bl 9/2001 Page

6,549,624 Bl 4/2003 Sandru
6,792,110 B2 9/2004 Sandru

executable files. Embodiments can efficiently identify
whether multiple document versions are substantially similar,
even if they are not identical, thus potentially reducing stor-
age space requirements.

20 Claims, 15 Drawing Sheets

Receive Document Copy

1)

I

Identify Section of Copy Corresponding
to Original Data Sequence

203

[

| Identiy Original IVC

05

| Generate Verification Data Sequence 207 |

| Generate Modified Verification Data Sequence 209 |

[

| Generate Verification IVC for Modified Verification Data Sequence 211 |

| Compare Original IVC with Verification IVC 213 |

| Determine Integrity of Copy Section

2]

US 8,694,473 B2

Page 2
(56) References Cited Wikipedia, Trusted timestamping, Apr. 1, 2008, http://en.wikipedia.
org/wiki/Trusted__timestamping, printed on Apr. 1, 2008, 3 pages.
OTHER PUBLICATIONS Speedylook Encyclopedia, Wrap Soleau, date unknown, http://www.

speedylook.com/wrap__soleau.html, printed on Apr. 1, 2009, 1 page.
E-Timestamp, How a digital timestamp works, date unknown, http://

www.e-timestamp.com/timestamp.htm, printed on Apr. 22, 2007, 2
pages. * cited by examiner

U.S. Patent Apr. 8, 2014 Sheet 1 of 15

US 8,694,473 B2

FIG. 1 100

Receive Original Document 101
I
Generate Original Data Sequence 103
|
Generate Modified Data Sequence 105
|
Generate Original IVC for Modified Data Sequence

Associate Original IVC with Original Data Sequence

107

109

U.S. Patent Apr. 8, 2014 Sheet 2 of 15 US 8,694,473 B2

FIG. 2 5200
Receive Document Copy 201
I
ldentify Section of Copy Corresponding
to Original Data Sequence 203

Identify Original IVC 205

|
Generate Verification Data Sequence 207

Generate Modified Verification Data Sequence 209

, 2U9
Generate Verification IVC for Modified Verification Data Sequence 211

I

Compare Original IVC with Verification IVC 213
I

Determine Integrity of Copy Section 21

U.S. Patent Apr. 8, 2014 Sheet 3 of 15

FIG. 3

300

US 8,694,473 B2

Increment N 01

o

Receive Nth Document 303

Generate Nth Data Sequence

05

|

Generate Nth Modified Data Sequence

07

Generate Nth IVC for Nth Modified Data Sequence 309

l

Associate Nth IVC with Nth Document

11

l

Compare Nth IVC with each (N-1)th IVC

13

Match? N
315
Y
Generate Difference Record 317
I
Select Document for Deletion 19

to Retained Document 321

Replace Deleted Document with Pointer

U.S. Patent Apr. 8, 2014 Sheet 4 of 15 US 8,694,473 B2

FIG. 4 400
g

Increment N 401

I

Generate Nth Data Sequence from Original Document 403

I

Generate Nth Modified Data Sequence 405

I
Generate Nth IVC for Nth Modified Data Sequence 407

|
Associate Nth IVC with Nth Modified Data Sequence 409

Associate Original IVCs with Original Document 11

U.S. Patent Apr. 8, 2014 Sheet 5 of 15 US 8,694,473 B2

FIG. 5 §500
Receive Document Copy 501
Increment N 503
I
Identify Section of Copy Corresponding
to Nth Original Data Sequence 505

Identify Nth Original IVC 507
I

Generate Nth Verification Data Sequence 09

I

Generate Nth Modified Verification Data Sequence 511
I

Generate Nth Verification IVC for Nth Modified Data Sequence 513

I
Compare Nth Verification IVC with Nth Original IVC 15

Match? Y
517

N

Generate Difference Report 19

U.S. Patent Apr. 8, 2014 Sheet 6 of 15 US 8,694,473 B2

FIG. 6 600
g

Receive Data Sequence 601
I
Identify First Element 603
I

Identify Last Element or Criteria 05

|dentify Modifiable Element Between First and Last 607

Delete or Substitute Identified Element 09

Done? N

611

Y

Send Modified Data Sequence to IVC Generator 13

U.S. Patent Apr. 8, 2014 Sheet 7 of 15 US 8,694,473 B2

FIG. 7 700
g

Identify Whether Unprinted Characters Are In
ASCII Printably Determinable Character Ranges 701

Identify Modifiable Elements
Using ASCII Values 705

|dentify Modifiable Elements
Using File Format Codes 707

FIG. 8 800
g

Receive Document 801
|
ldentify Data Sequences 803
l
Generate Original IVCs for Data Sequence 05

Append Original IVCs to Document 807

U.S. Patent Apr. 8, 2014 Sheet 8 of 15 US 8,694,473 B2

FIG. 9 00
g

©
o
—

Receive Document

©
()
w

Identify Sections

o

Increment N 905

I
Generate Original IVCs for Sections (N-1), N, (N+1) 907

I
Append Original IVCs to Section N 909

Done? N

911

Y

Publish Document with Original IVCs 913

U.S. Patent Apr. 8, 2014 Sheet 9 of 15 US 8,694,473 B2

FIG. 10 51000

Receive Published Document 1001

Generate Electronic Copy 1003

Increment N 1005

|dentify Sections of Electronic Copy Corresponding
to Sections (N-1), N, (N+1) 1007

\

Identify Original IVCs for Sections (N-1), N, (N+1) 1009
l

Generate Verification IVCs for Sections (N-1), N, (N+1) 1011

|

Compare Verification IVCs With Original IVCs 1013

Match? Y
1015

N

Generate Tamper Report 1017

U.S. Patent Apr. 8, 2014 Sheet 10 of 15 US 8,694,473 B2
1100
1101 FIG. 11
\'\
Electronic Document Generation
1102 | 1103
M v v ~

AB<space><space>CD<Tab>EF$YZ

AB<Tab>CD<«space><Tab>EF$YZ

v

Create Subset of Certain Elements

v

1108

112 ABCDEF$YZ |-—_-1110
! 1104
41 42 43 44 45 46 24 59 5A \'\ v
1114 : —‘
1116 ~ Generate IVC |/’_\\|
4B210790 16F2D470 C0507E04 32CDO9A2 F993C38B
1115
17 N ~ A\ 4
1113 GeneraTte IvcC 1105
41 42 43 44 45 46 24 59 52| |77
1109 ABCDEF$YZ |—— 1111
Create Subset of Certain Elements
1106 AB<space>CD<space><space>EF$YZ |—_ 1107
. f

Optical Character Recognition (OCR)

U.S. Patent Apr. 8, 2014 Sheet 11 of 15 US 8,694,473 B2
FIG. 12 1200
1202 1203
\,\ /./
Text for Text for demonstrating
demonstrating integrity verification integrity verification
|
v
1210 Subset selection [—_-1208

AN !

Text for demonstrating integrity verification

54 65 78 74 20 66 6F 72 20 64 65 6D 6F 6E 73 74
72 61 74 69 6E 67 20 69 6E 74 65 67 72 69 74 79
20 76 65 72 69 66 69 63 61 74 69 6F 6E

1216

_\

A

Generate

—_ 1214

IvC

!

AC9B9E34 84B97C7C BY96F1ICFC 05B81ELF A3FA101D

? 1215
1213 Generate 1IVC —
— 1
54 65 78 74 20 66 6F 72 20 64 65 6D 6F 6E 73 74
72 61 74 69 6E 67 20 69 6E 74 65 67 72 69 74 79
20 76 65 72 69 66 69 63 61 74 69 6F OFE

A

A

__ 1211

Text for demonstrating integrity verification

f

1209

1207

Subset selection

_\

verification

Text for demonstrating integrity

U.S. Patent Apr. 8, 2014 Sheet 12 of 15 US 8,694,473 B2

1300
FIG. 13

1301 Third of five pages.
04 1303

/ ~

»
Page 3 of 5
B041EQ0E2 CC464C10 BO66C3EC 0E344855 (OF4FFB5L6 Cl0C415E
A /' /' ' I /'

—_
98]
)
o

)) / /) /
\ \ \ \ \ \
1305 1306 1307 1308 1309 1310
1400
FIG. 14

1401 Fourth of five pages. Extra material.
1404 1403

/ ~

Page 4Kof 5
8041E0E2 OF4FFB56 CC464C10 AFED72B7 B998F7Bl 39A20FCY
'Y 'Y 'Y ' I 'Y

—
N
o
o

) / / /) /
\ \ \ \ \ \
1405 1406 1407 1408 1409 1410
1500
FIG. 15

1501 Fourth of five pages. Extra material.
1504 o3

/ /"/
K
Page 4 of 5
8041E0EZ2 6822BAS1 CC464C10 AFED72B7 B998F7Bl 39A20FCY9
N A A A N I

((({ { ¢

1505 1506 1507 1508 1509 1510

[
)
[
b

U.S. Patent Apr. 8,2014

Sheet 13 of 15 US 8,694,473 B2
FIG. 16 1600
User Computer 1602
Printer
| Document 1603 1604
I
Email Inbox
1
Intranet 1601 1605
|
Control node 1606 _\/\)/
| IVC Generator 1610 |
| Modification Rules 1611 |
| File Parser 1615
Server 1607
Security module 1609
Internet 1608
User Computer Q
1617 Other Networks
1618
PEDDaL node 1613
IVC database 1614
Timing module 1615

Account database 1616

U.S. Patent

Apr. 8,2014 Sheet 14 of 15
FIG. 17 1700
Document Section Select _| Modified IVC
] 1701 [1702 [*| Generator 1704
F N
_| Type Identify _| Modification Rules
a 1703 [7] 1705
A
Layer counter
1706
A 4
Comparison Association /
1708 Alternate Channel
1707

US 8,694,473 B2

U.S. Patent Apr. 8, 2014 Sheet 15 of 15 US 8,694,473 B2

FIG. 18 ;800
Computing Apparatus 1801
CPU
1802
Memory 1803
Digital representation 1804
Modified IVC generator 1805
Data sequence modifier 1807 1101\
A 4
IVC Generator 1808
— //,=\\‘
Maodification rules 1809 | |
Document processor 1806
1105 Y

US 8,694,473 B2

1
DATE-PROVABLE REGISTRATION SYSTEM
FOR PUBLISHED DOCUMENTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This is a continuation of U.S. patent application Ser. No.
12/954,864, filed Nov. 27, 2010, now abandoned which is a
continuation of U.S. patent application Ser. No. 12/637,748,
filed Dec. 15, 2009, now U.S. Pat. No. 7,877,365, which is a
continuation of U.S. patent application Ser. No. 12/053,560,
filed Mar. 22, 2008, now U.S. Pat. No. 7,676,501, and to
which priority is claimed.

TECHNICAL FIELD

The invention relates generally to information assurance.
More particularly, and not by way of any limitation, the
present application relates to integrity verification of printed
documents.

BACKGROUND

Documents have long been subject to tampering and forg-
ery, such as when multi-page documents are subjected to page
substitution. In a multi-page document with a signature
appearing on fewer than all of the pages, a potential forger
may be able to create one or more pages that appear to belong
in the document, but yet have different content than is con-
tained in the original pages. The forger may then remove one
or more valid pages and substitute the newly-created ones.
For example, in a multi-page will, where the testator and
notary sign only on the final page, a forger may substitute one
of the previous pages with one containing plausible, yet dif-
ferent content. The movie Changing Lanes, released in 2002,
demonstrates the concept of forgery by page substitution,
although in that story line the document content was not
changed, but merely reformatted to be associated with a sig-
nature page from a different original document. The forged
document was then submitted to a court by an unethical
attorney, as a piece of evidence.

Some efforts to combat document tampering include hav-
ing the signer initial each page and drafting the document
such that sentences span page breaks. However, neither
method provides complete security. Many forgers are able to
falsely generate initials easily, generally more easily than
forging entire signatures. Widespread acceptance of photo-
copied versions of documents opens forgery to an even wider
set of people lacking talent for duplicating signatures, since a
small cut-out from a valid page containing the signer’s initials
on an intermediate page may be attached to a forged page
prior to photocopying. Spanning sentences across page
breaks merely requires that the forged content on the substi-
tuted page take up approximately the same printed space as
the valid content that is replaced.

A drastic solution of notarizing each page individually may
not be practical. Further, notarizing each page merely indi-
cates that each page had been signed by the proper person, but
without further measures, notarizing each page may not
ensure that all the pages were necessarily intended to belong
to the same document. That is, pages of different documents,
even if all individually notarized, could potentially be com-
bined to produce a new document that the author did not
intend to endorse as a single, complete document.

There has thus been a long-felt need for a system and
method for rendering printed documents tamper evident, such
that tampering and forgery may be easily detected. However,

10

15

20

25

30

35

40

45

50

55

60

65

2

there has been a failure by others to solve the problem without
requiring special inks and/or paper or the use of secret infor-
mation not available to an independent reviewer of the docu-
ment. If an obvious, workable solution were available,
authors of important documents, such as wills and other docu-
ments presenting attractive targets for forgery, would likely
have already adopted a solution in order to mitigate risk, thus
freeing the signer from the tedium of signing or initialing each
page of a long, multi-page document and other document
generators from the need for using expensive printing mate-
rials.

Solutions do exist for rendering digital computer files, such
as electronic document files, tamper evident. These com-
puter-oriented solutions predominantly use hash functions or
other integrity verification functions. A hash function, which
is an example of a one-way integrity verification function,
provides a way to verify that a computer file, such as a pro-
gram, data file or electronic document, has not changed
between two separate times that the file has been hashed.
One-way integrity functions generally perform one-way
mathematical operations on a digital computer file in order to
generate an integrity verification code (IVC), such as a hash
value or message digest. This value may then be stored for
later reference and comparison with a subsequently calcu-
lated IVC, but is generally insufficient to enable determina-
tion of the file contents. A difference between two I[VCs may
then provide an indication that the file contents had been
altered between the calculations. Hash functions are currently
widely-used in electronic signatures, for example in pretty
good privacy (PGP) electronic signatures, in order to render
digitally signed files tamper evident.

For example, if a file is created and hashed, anyone receiv-
ing a copy of that file at a later time may use a hash function
and compare the resulting second hash value against the first
hash value. For this to method to identify tampering, the same
hash function must be used both times, and the person com-
paring the hash values may insist on receiving the first hash
value through some other delivery channel than the one
through which the file to be verified was received. One way to
do this would be for an author of a digital file to hash the file,
store the result, and mail the file to a receiving party on a
computer readable medium such as optical media, including
a compact disk (CD) or a digital versatile disk (DVD) or
magnetic media, or non-volatile random access memory
(RAM). The receiving party hashes the file, stores the result,
and waits for a telephone call from the author to discuss the
two hash values. If, during transit, the media had been inter-
cepted and substituted with one containing an altered file, the
telephone conversation discussing the hash values would
reveal that the received file was different than the one sent.

Secure hash functions, such as MDS5, secure hash algo-
rithm 1 (SHA-1) and SHA-2 family of hash functions, includ-
ing SHA-224, SHA-256, SHA-384 and SHA 512, have cer-
tain desirable attributes. For example, they are one-way, the
chances of a collision are low, and the hash value changes
drastically for even minor file alterations. The one-way fea-
ture means that it is exceptionally unlikely that the contents of
a file could be recreated using only the hash value. The low
chance of a collision means that it is unlikely that two difter-
ent files could produce the same value. Drastic changes in the
hash value, for even minor alterations, make any alteration,
even the slightest, easily detectable.

This final feature has significant consequences when
attempting to use hash functions to verify the integrity of
printed documents. For example, an author may type “ab ¢”
as the entirety of an electronic document file and then hash it.
If the file were merely ASCII text, that is, it was not a propri-

US 8,694,473 B2

3

etary word processor file, it could contain ASCII values {97
32 98 32 99} in decimal, which would be {0x61 0x20 0x62
0x20 0x63} in hexadecimal (hex). The message digest using
the SHA-1 would then be {0xA9993A36 0x4706816A
0xBA3E2571 0x7850C26C 0x9CDODSID}.

However, the printed version of the document would not
reliably indicate whether the letters were separated by simple
spaces or hard tabs. For example, another author may type
“a[Tab]b[Tab]c” as an electronic document file which, if it
were a simple ASCII text file instead of a word-processing
file, would contain ASCII values {97 9 98 9 99} in decimal
and {0x61 0x09 0x62 0x09 0x63} in hex. Based on the
horizontal spacing of the [Tab] during printing, the two
example documents might be indistinguishable in printed
form. The message digest of the tabbed file using the SHA-1
would be {0x816EBDB3 0xE5E1d6030 x41402A18
0x09E2F409 0xD53C3742}. This is a drastically altered
value for differences that may have no significance regarding
the substantive content or the intended plain-language mean-
ing.

A printed document that is scanned by an optical character
recognition (OCR) system, or even carefully retyped by a
second person, can be expected to fail verification with stan-
dard hash algorithms when the hash value of the recreated file
is compared against the hash value of an electronic file origi-
nally used in the creation of the document. This can happen
even if the document is recreated exactly word-for-word,
because printing is a lossy process. That is, unprinted infor-
mation, such as formatting commands, metadata and embed-
ded data, is included in the hash value of the original elec-
tronic document file, but is entirely unknown when
converting a printed version of the document back into
another electronic file that can be hashed.

Even if a file is distributed electronically, the presence of
formatting commands and a proprietary file format may still
present a problem. For example, if a document is hashed, and
then scrubbed to remove metadata or other data, the hash
value will be different, even if the substantive content is not
altered. Or possibly, a file could be opened without the con-
tent being altered, but the metadata might change to reflect
that the document had been accessed. In such a case, a stan-
dard hash function would be useless for detecting changes to
the document content, because the hash value can be expected
to be significantly different, even if not a single change were
made to the printed portion of the document.

Using a standard hash algorithm, therefore, would be use-
less when only a printed version of a document is available,
because the hash value verification would be expected to fail,
even if the printed document was completely intact and free
from any changes. Thus, despite the long-felt need for a
system and method for rendering printed documents tamper
evident, even widespread use of highly-secure digital file
integrity verification systems has not yet produced a solution
for documents printed on paper. The systems and methods
widely used for digital files are simply inapplicable to printed
documents, and prior art systems and methods fail to address
the problem, even partially.

Unfortunately, a problem exists even for the use of hash
functions with computer files. Recent advances in computa-
tional capability have created the possibility that collisions
may be found for hash algorithms that are trusted today. For
example, the SHA-1 produces a 160-bit message digest as the
hash value, no matter what the length of the hashed file may
be. Thus, the SHA-1 has a vulnerability, which is shared by all
hash algorithms that produce a fixed-length message digest.

If a first set of changes is made to a file, a second set of
changes, if determinable, may be made to compensate for the

10

15

20

25

30

35

40

45

50

55

60

65

4

first set of changes, such that a hash value calculated after
both sets of changes are made is identical to the hash value
calculated prior to any changes being made. This renders the
use of the hash function unable to identify the alteration.
There is, however, a requirement for exploiting this vulner-
ability: The altered file needs to contain enough bits to include
both the first set of changes and a second set of compensating
changes. The theoretical limit for the maximum number of
bits necessarily affected by the second set of changes is the
length of the message digest, although in practice, a second
set may be found in some situations that requires fewer than
this number. For the SHA-1, the second set of changes does
not need to exceed 160 bits in order to force the SHA-1 to
return any desired value, such as the pre-tampered value. 160
bits is not a large number, and is far exceeded by unused space
in typical word processing, audio, video and executable files.
Therefore, if a file is hashed with the SHA-1 to determine an
original hash value, and a first set of changes is then made, a
second set of changes is possible that will cause the SHA-1 to
return the same message digest as the original message digest
for the unaltered file. Thus, the second set of changes is a
compensating set, because it compensates for the first set of
changes by rendering the SHA-1 blind to the alterations. The
second set of changes may include appending bits to the file,
changing bits within the file, or a combination of the two. The
compensating set of changes, however, may affecta set of bits
larger than the message digest, and in some cases, this may
ease the computational burden and/or make the compensating
set of changes harder to detect.

There are two typical prior art responses to the suggestion
of'this vulnerability: The first is that the SHA-1 and other hash
algorithms have been specifically designed to make calcula-
tion of a compensating set of changes computationally infea-
sible. However, due to advances in computational power and
widespread study of hash algorithms, such calculations may
not remain computationally infeasible indefinitely. A second-
ary response is that the compensating set of changes should be
easily detectable, because they may introduce patterns or
other features that do not comport with the remainder of the
file.

Unfortunately, though, the secondary assumption, even if
true, is not entirely useful. This is because a primary use of
hash functions is for integrity verification of computer files
intended for computer execution and as data sets for other
programs. Both types of files typically use predetermined
formats that contain plenty of surplus capacity for concealing
the compensating set of changes. For example, executable
programs typically contain slack space, which are regions of
no instructions or data. Slack space is common, and occurs
when a software compiler reserves space for data or instruc-
tions, but does not use the reserved space. Often slack space
is jumped over during execution. Thus, changes made to some
sections of slack space, including the introduction of arbitrary
bits, may not affect execution, and therefore will remain
undetectable.

A software program may potentially be altered using a first
set of changes to the executable instructions, such as adding
virus-type behavior or other malicious logic, and a compen-
sating set of changes may be made in the slack space. The
compensating set of changes renders the first set of changes
undetectable to the hash algorithm, while the compensating
set itself remains undetectable because it is in the slack space,
and is neither executed nor operated on to produce anomalous
results. A covertly altered program may therefore be run,
mistakenly trusted by the user, because it produces the correct
hash value but does not exhibit any blatantly anomalous
behavior.

US 8,694,473 B2

5

Similarly, word processing, audio and video files typically
have surplus capacity that exceeds the minimum needed for
human understanding of their contents. For example, propri-
etary word processing files, such as *.DOC files, contain
fields for metadata, formatting commands, and other infor-
mation that is typically not viewed or viewable by a human
during editing or printing. This surplus capacity often
exceeds the message digest length of even the currently-
trusted set of hash functions. Thus, a first set of changes could
be made to the portion of the file having content that is to be
printed, heard or viewed, while the compensating set of
changes could be made within the surplus capacity.

Another issue, which could use improvement, is version
control of documents for reducing wasted space in file sys-
tems on storage media. During the course of computer usage,
multiple identical copies of some files may be stored on a file
storage system in different logical directories. When backing
up, compressing, or otherwise maintaining the storage sys-
tem, such as copying a hard drive to optical media or purging
unneeded files, it may be desirable to avoid copying or retain-
ing duplicate files that waste media space.

For example, if a computer user faces the prospect of
running out of storage space, the user may wish to delete
duplicates of large files. If a single file is present in many
directories, a user may create a search that spans the multiple
directories, and look through the resulting list for duplicated
names and dates. If storage space is low, it may be preferable
to copy or retain only one of the files. Unfortunately, such a
plan suffers from multiple challenges, including search time
for duplicates, and missed opportunities for using shortcuts.
Further, if two files having identical content, but different
names, and which were put on the storage medium at different
times, common name and date search methods would not
identify them as identical. Thus, storage space would be
unnecessarily wasted.

SUMMARY

By creating a system that violates a fundamental rule of
common integrity verification systems, the expected failure
verification for a printed document can be prevented, thereby
reducing false alarms to a level which enables tamper detec-
tion of printed documents. Printed documents may now be
rendered tamper evident with cryptographically strong meth-
ods such as hash functions. Veritying the integrity of printed
documents, by using an embodiment of the invention,
requires operating entirely outside the standard paradigm of
digital security: A predefined subset of document elements,
which may be expected to be undeterminable from a printed
version of a document, are excluded from the initial calcula-
tion of an integrity verification code (IVC) while the docu-
ment is in electronic form. For example, metadata, tabs,
spaces, special characters, formatting commands, and the
like, may be excluded from a hash value calculation. Upon a
later recreation of a second digital form of the document, for
example by scanning or retyping the printed version of the
document into a computer, a subset of document elements is
excluded from the second calculation of an IVC. Thus, evenif
the first and second digital forms of the document are differ-
ent, if only a common subset of document elements, such as
printed characters, are used in the calculations of the IVCs, a
match may be expected when the printed version of the docu-
ment has not been altered.

Printed and imaged documents may now be rendered
tamper evident, at least with regard to substantive content.
Risks of some non-literal document changes, such as font,
spacing, alignment, and other formatting commands, may

35

40

45

6

need to be tolerated. However, a degree of content verification
is now possible for printed documents that had not previously
been available. Additionally, near duplicate files may be
found rapidly, by comparing IVCs of substantive content,
which ignore unimportant changes. Further, hash function
reliability may be improved by eliminating hiding locations
for compensating changes in the event that an electronic
document, or digital file, is tampered and the tampering is
compensated for.

Excluding certain portions of a digital file from a hash
value calculation removes hiding places for compensating
changes, thereby either rendering tampering evident, or forc-
ing the compensating changes into a predetermined portion of
the file. This may enable detection of the compensating
changes by other methods, such as a human reading of printed
characters, or execution of central processing unit (CPU)
instructions. Embodiments tolerate changes to a file, using a
deterministic rule set for selecting regions for which changes
are to be tolerated. This currently goes directly against the
prevailing paradigm of hash function usage, because omitting
sections from integrity verification is an invitation to tamper
the omitted sections. The prevailing paradigm emphasizes the
detection of any changes at all to a file. Effectively, this
proposition is fundamentally at odds with current implemen-
tations of hash function security protocols, although a layered
IVC approach, in which multiple IVCs are calculated, some
covering an entire digital file, and others covering only con-
tent-dictated portions, such as by omitting slack space, can
provide not only full file protection, but superior protection
over the prior art single-layer hash function calculations.

Embodiments hash only a subset of the characters of an
electronic file or document. Some embodiments may only
hash printable characters, whose presence and order can be
determined with certainty from a printed version. For
example, ASCII codes, such as from 33 to 94 and 97 to 126 are
the computer representation of most printable letters, punc-
tuation, and numbers in the English language. Characters,
formatting commands, metadata, and other elements of a first
electronic document that cannot be exactly reproduced by
manually retyping a printed version of the first document into
a second electronic document are excluded from the hash
function in some embodiments, in order to prevent ambiguity
when a recreated electronic document is hashed. The use of
only printed characters in some embodiments, and the exclu-
sion of uncertain characters and other file content that is lost
during printing, allows reliable recreation of a hash value
from a printed version of a document.

Embodiments may hash only a subset of the characters of
a file, and apply a consistent rule for other characters. For
example, all separations between characters, such as spaces
and tabs, may be represented by a pre-selected character, such
as a single space, even where multiple spaces may possibly be
ascertainable. Embodiments exclude at least a portion of
unprinted content, such as metadata, or other data that may be
unrelated to the substantive content of the document.

Aspects of the invention also relate to computer commu-
nication using cryptography for purposes of data authentica-
tion and computer program modification detection by cryp-
tography. Aspects of the invention further relate generally to
database and file management and to file version manage-
ment and computer media storage optimization.

The foregoing has outlined rather broadly the features and
technical advantages in order that the description that follows
may be better understood. Additional features and advantages
will be described hereinafter which form the subject of the
claims. It should be appreciated by those skilled in the art that
the conception and specific embodiments disclosed may be

US 8,694,473 B2

7

readily utilized as a basis for modifying or designing other
structures for carrying out the same purposes. It should also
be realized by those skilled in the art that such equivalent
constructions do not depart from the spirit and scope of the
invention as set forth in the claims. The novel features which
are believed to be characteristic of the invention, both as to its
organization and method of operation, together with further
objects and advantages will be better understood from the
following description when considered in connection with
the accompanying figures. It is to be expressly understood,
however, that each of the figures is provided for the purpose of
illustration and description only and is not intended as a
definition of the limits of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, reference is now made to the following descriptions
taken in conjunction with the accompanying drawings, in
which:

FIG. 1 illustrates a flow diagram for a method of generating
an integrity verification code (IVC) for a document.

FIG. 2 illustrates a flow diagram for a method of ascertain-
ing the integrity of a document, using an [VC generated in
accordance with the method of FIG. 1.

FIG. 3 illustrates a flow diagram for a method of conserv-
ing digital file storage space, using an IVC generated in
accordance with the method of FIG. 1.

FIG. 4 illustrates a flow diagram for a method of improving
the reliability of integrity verification, using an IVC gener-
ated in tandem with the method illustrated in FIG. 1.

FIG. 5 illustrates a method of ascertaining tampering in
tandem with methods illustrated in FIGS. 1 and 4.

FIG. 6 illustrates a method for generating a modified data
sequence compatible with the method illustrated in FIG. 1.

FIG. 7 illustrates a method for identifying a modifiable
document element compatible with the method illustrated in
FIG. 6.

FIG. 8 illustrates a method for associating an IVC with a
document, compatible with the method illustrated in FIG. 1.

FIG. 9 illustrates another method for associating an IVC
with a document, compatible with the method illustrated in
FIG. 1.

FIG. 10 illustrates a method for using IVCs to identify
document tampering, compatible with the method illustrated
in FIG. 9.

FIG. 11 illustrates a functional block diagram of an
embodiment of a document integrity verification system.

FIG. 12 illustrates another functional block diagram of an
embodiment of a document integrity verification system.

FIG. 13 illustrates an intact page from a tamper evident
printed document.

FIG. 14 illustrates a tampered page from a tamper evident
printed document.

FIG. 15 illustrates another tampered page from a tamper
evident printed document.

FIG. 16 illustrates an embodiment of a system for creating
a public database of IVCs.

FIG. 17 illustrates another functional block diagram of an
embodiment of a document integrity verification system.

FIG. 18 illustrates a diagram of an embodiment of'a docu-
ment integrity verification apparatus.

DETAILED DESCRIPTION OF THE INVENTION

Terms are often used incorrectly in the information assur-
ance field, particularly with regard to tamper detection. For

20

25

35

40

45

55

65

8

example, the term “tamper proof” is often used incorrectly. A
tamper proof article is effectively impervious to tampering,
which is often described as unauthorized alteration. Few
articles qualify for such a designation. “Tamper resistant” is
also often used incorrectly when a more appropriate proper
term would be “tamper evident”. A tamper resistant article is
one for which an act of tampering is difficult, although pos-
sible, to accomplish. A tamper evident article is one for which
tampering is detectable, independent of whether the tamper-
ing itself is easy or difficult to accomplish.

Multiple types of documents may benefit from being ren-
dered tamper evident, including those printed on paper,
etched, or otherwise rendered on any medium. Digital docu-
ment images, for example PDF documents and/or other digi-
tal files stored in an image-based and/or pixilated format, may
also be rendered tamper evident, at least with regard to sub-
stantive content of the digitally-renderable images.

According to the prior art paradigm of document integrity
verification, there are three states of a scanned document.
State 1 is the original electronic rendering. State 2 is the
printed version, which is missing information relative to State
1. State 3 is the recreated electronic version, created by scan-
ning the State 2 version. State 3 has extra information, much
of which is error prone and potentially random, when pre-
dicted at the time of creation of the State 1 version of the
document. States 1 and 3 are almost certainly different, and
thus cannot be tested by the same integrity verification func-
tion in order to ascertain the integrity of the State 2 version. A
new paradigm adds the following: There exists a fourth state,
State 4 of the document, which can be derived from State 3 by
eliminating all of the potentially erroneous information added
by the transition from State 2 to State 3, as well as a safety
margin of sacrificial material. State 4 is also derivable from
State 1, which can be identified as State 4-prime. Therefore,
the integrity verification process can be performed to com-
pare State 4 against State 4-prime, which can be a reliable
comparison, in order to infer the integrity of State 2, within a
predetermined tolerance that allows for some variation.

The exclusion of elements of a digital computer file from a
hash value calculation process runs counter to the current
paradigm for the use of hash functions. The current use for
hash functions is for detecting any change at all to a file, no
matter how small the change may be. Excluding elements
from hashing prevents detection of many forms of alteration,
and for the traditional uses of hash functions in computer
security, such a result is unacceptable. This is because hash
functions such as the MDS, secure hash algorithm 1 (SHA-1)
and SHA-2 family of hash functions, and cyclic redundancy
checks (CRCs), are often used for virus detection and tamper
detection. Excluding metadata in a word processing file from
a hash value could enable malicious software to inhabit the
file or allow someone to access and edit the file without
detection. Thus, current implementations for hashing com-
puter files for tamper detection typically include all of the bits
in a file, whether printed or not for word processing files, and
whether operated upon or not for binary executable files.

Embodiments allow verification that a multi-page printed
document has not been subjected to page substitution forgery
by enabling reliable integrity verification of the substantive
document content. This is accomplished by excluding
sources of expected false alarms, such as unprinted and/or
ambiguous information, that could render a traditional hash
function integrity check useless. In operation, a document
author could hash a document in accordance with an embodi-
ment of the invention and print the hash value on each page of
the document. A later reader of the document could perform
an optical character recognition (OCR) procedure on the

US 8,694,473 B2

9

printed document to produce a recreated electronic version,
hash the recreated electronic version in accordance with an
embodiment of the invention, and compare the printed hash
value with the hash value for the recreated electronic version.

Prior art hash functions would not be useful in such a
manner, since the two values used for comparison would
almost certainly be different. However, embodiments of the
invention could enable a reliable comparison without the
likelihood of a false alarm that would result from using a
traditional hash paradigm.

FIG. 1 illustrates a flow diagram for a method 100 of
generating an integrity verification code (IVC) for a docu-
ment. Method 100 may be performed with any electronic
document, whether intended to be printed, etched, rendered
on any permanent or semi-permanent medium, saved in a
graphical image or common publishing format, saved in a
printer-ready file, presented in a humanly-viewable format on
adisplay, used as a data source by a computing device, or used
to furnish computer-executable instructions to a computing
device. In block 101, an original document is received, either
in electronic format as a digital representation, possibly
through an electronic message communication, a facsimile or
on a computer readable medium such as a magnetic or optical
storage device or volatile or non-volatile memory, or in a
non-electric format, such as printed or etched.

In block 103, an original data sequence is generated to
represent the contents of the original document. In some
embodiments, the data sequence is generated by scanning a
document and performing an optical character recognition
(OCR) process, in other embodiments, the data sequence
could be generated by retyping a document received in a
printed format, in other embodiments, the data sequence
could be generated by reading a document from a computer
readable medium, and in other embodiments, the original
data sequence could represent the contents of an electronic
document, i.e., a digital representation of a document, which
is already in a computer memory. In some embodiments, if an
electronic document contains elements in a class of elements
that will be excluded from the later-generated modified data
sequence, the original data sequence will be the subset of
document elements beginning and ending with elements that
will remain unmodified in the modified data sequence. In
some embodiments, generating the original data sequence
includes determining the file type and parsing or processing
the document for type-relevant content. For example, a word
processing document may be parsed to distinguish between
metadata and user-editable content that is to appear in a
printed or published version of the document. In some
embodiments, content of document and footers, even if edit-
able by a user, are excluded from the original data sequence.
A binary executable file may be parsed and/or analyzed by a
software analysis tool, such as a disassembler, that distin-
guishes between data-only sections and sections containing
executable instructions. In some embodiments, generating
the original data sequence comprises identifying the entire
digital file, whereas in other embodiments, generating the
original data sequence comprises selecting a portion, less
than all, of the digital file, which contains selected type-
specific elements such as printed characters or machine lan-
guage instructions.

In block 105, a modified data sequence is generated with a
lossy process, by excluding certain elements within the origi-
nal data sequence, i.c., at least one element between the first
and last element of the original data sequence is omitted or
substituted when generating the modified data sequence. The
lossy process for printed documents is intended to exclude
any elements in the original document which cannot be ascer-

10

15

20

25

30

35

40

45

50

55

60

65

10

tained with certainty. The processes used in block 105 are
selected such that the output from block 105 will be the same
as the output from equivalent processes used later. In general,
the modified data sequence will be shorter than the original
data sequence, but in any case, will have at least one element
that is different, either by substitution or omission. In some
embodiments, capitalization information may further be dis-
carded, for example, lower case characters in the original data
sequence may be made upper case in the modified data
sequence. Such modification is lossy, because the original
data sequence cannot be regenerated from the modified data
sequence. Lossy modification prior to integrity verification
works against the prevailing paradigm of integrity verifica-
tion, because changes can be made in the document that are
undetectable.

Elements of a document includes bits and bytes needed for
editing, printing, displaying, managing, and executing,
including the binary representations for individual letters,
punctuation, characters, spaces, tabs, line feeds, fonts, for-
matting, hyperlinks and more. At a higher level of abstraction,
elements could include words, paragraphs, sections and chap-
ters. A subset of the elements of a document is any collection
of the elements of a document, such that there is at least one
element in the document that is not in the subset. It should be
noted that, while any single subset cannot make up the entire
document, two or more subsets could contain all of the ele-
ments of the document.

In block 107 an IVC is generated for the modified data
sequence, and in block 109, the IVC generated for the modi-
fied sequence is associated with the original data sequence.
This operates outside prior art paradigms for document secu-
rity, in which integrity verification is intended to allow iden-
tification of any changes to a document. The key, however, is
that the rules for generating the modified data sequence from
the original data sequence are deterministic, and either com-
municated with certainty communication or are determinable
with a limited number of trials.

The IVC, therefore, is not calculated from the original data
sequence, but instead from a modified data sequence, which
has at least one element, between a first and final element,
which is different from, or omitted from, the original data
sequence. This is another violation of the prior art paradigms
for document security, because in some embodiments, the
IVC is calculated after internal content changes, such as
substitutions and omissions, are made to a data sequence, and
associated with the unmodified data sequence. Thus, in those
embodiments, the IVC is not calculated using the data
sequence with which it is associated. In some embodiments,
associating an IVC with the original data sequence comprises
inserting the IVC into the electronic document from which
the data sequence was generated. In some embodiments,
associating an IVC with the original data sequence comprises
inserting the data necessary from printing the IVC on the
document into a printer data stream or publishing format file,
such that the IVC appears on a hard copy printed version of
the document or in the published format file.

From an information theory perspective, if the rules used to
generate the modified sequence are determinable, then the
modified data sequence is reproducible, and an IVC gener-
ated with the modified sequence can be used to verify the
integrity of at least a portion of the information contained in
the original document. The result is that, because the modi-
fication rules permit the loss of information, alterations to at
least some portions of the original document may be indis-
cernible, ifthey are confined to the lost portions of the original
data sequence. Thus, slightly different versions of an original
data sequence could produce the exact same modified data

US 8,694,473 B2

11

sequence. For example, in some embodiments, a first original
data sequence D1, using three spaces to indent at the begin-
ning of a paragraph, a second original data sequence D2,
using tab characters to indent at the beginning of a paragraph,
and a third original data sequence D3, using formatting com-
mands to indent at the beginning of a paragraph, could all
produce identical modified data sequences if the substantive
content of D1, D2 and D3 were similar enough.

In some embodiments, the rules for creating a modified
data sequence could include replacing any combination of tab
characters (ASCII 9) and/or series of spaces (ASCII 32) and/
or other preselected character patterns in the original data
sequence with a single space (ASCII 32), or omit the tabs and
spaces entirely, resulting in only printable ASCII characters
remaining in the modified data sequence. A space between
printable characters, whether due to a space, a tab, or a com-
bination, my be printably determinable, because the existence
of a gap, i.e., a horizontal displacement exceeding the hori-
zontal displacements between other pairs of adjacent printed
characters, may be ascertained. Multiple tabs and spaces,
however, are unlikely to be determinable with certainty, as are
spaces and tabs at the beginning of a line, since an indention
may be due to formatting commands, rather than a user-typed
character. Line justification, which introduces additional
spaces between words or letters, in order to cause a printed
line to start and end at specified margins, can complicate
efforts to determine the number of spaces between printed
characters. Other issues complicating the determination of
the existence of spacing characters is when a tab setting
places a character close to the same location it would have
been placed without a tab and column spacing in a multi-
column document could be confused with spacing between
words. To reduce the column spacing ambiguity, the rules for
generating the modified data sequence for a document, which
is to be printed for human reading in a multi-column format,
may need to be processed to re-order the words as they would
be interpreted by an OCR process that did not take into
account the columns when creating an electronic version of
the document. The combination of a carriage return and a line
feed may be printably determinable, as is a page break. Print-
ably determinable elements include printable elements, as
well as elements whose existence may be determined from a
printed version of a document. However, page and line break
characters in a document are generally not determinable from
a printed version of the document, because the word wrap-
ping function of a word processor or other program used to
generate a document introduces such elements automatically,
often without the document author typing corresponding
characters. Some embodiments may recognize a binary value
within a printable range of ASCII characters as an unprinted
formatting mark, based on the document type, such as the
</p> paragraph formatting identifier in an html document. In
such embodiments, the rules for generating the modified data
sequence will permit identification of unprinted, or unpub-
lished, document elements by a file parser based on reserved
identifiers for certain document types, for example angle
braces in html and xml documents.

In some embodiments, each element in the original data
sequence will be subject to a determination of retain, omit, or
modify. Retained elements pass through to the likely shorter
modified data sequence. Between the first and final retained
elements, at least one element will be omitted or modified. In
some embodiments, the modification rules may be kept secret
for a party which intends to monitor a file on a computer
storage system for modification, such as for virus or hacker
penetration determination. For some embodiments, custom

20

35

40

45

55

12

rule sets will be communicated between a limited number of
parties. For some embodiments, modification rules will be
published openly.

The original IVC generated for the modified data sequence
in block 107 may be an integrity verification function result,
such as a hash value or a checksum, which typically has fewer
bytes than the data sequence for which the IVC is generated.
The hash function may be any combination of the MDS5, the
secure hash algorithm 1 (SHA-1), any of the secure hash
algorithm 2 (SHA-2) family of functions, or any other suit-
able one-way function. Although blocks 103-109 are illus-
trated in a manner that indicates subsequent processes, it
should be understood that the processes denoted by blocks
103-109 may be conducted as overlapping in time. For
example, as a document is typed, a function of a word pro-
cessor may send portions of the document to a parser and then
a one-way function, such as a hash function, in order to
continually update the current IVC displayed in the document
footer, possibly along side a page number. Further, if the
document is large, it may be wasteful to generate the entire
modified data sequence in memory. Rather, sections of the
original data sequence may be modified on an as-needed basis
for the IVC generation, cycling through the processes of
blocks 105 and 107, such that the processes of blocks 105 and
107 are effectively simultaneous. Hash functions typically
operate on predetermined block sizes, which are often smaller
than the document being hashed. For some embodiments of
method 100, sections of the original data sequence may be
modified in a buffer to create portions of the modified data
sequence with a length that is a multiple of the hash function
block size. The same buffer location in memory may be
reused for subsequent portions of the document, in order to
save memory usage. Thus, the entire modified data sequence
may not exist in memory all at a single time if method 100 is
implemented in a manner to save computer memory, but
rather is generated in sections for use by the IVC generator.

Associating the original IVC with the original data
sequence in block 109 can include printing a portion of the
IVC on the document, such as printing a portion of a hash
function value, often called a message digest, on a page
relating to the original data sequence. In some embodiments,
a document signer or endorser can write an IVC by hand onto
the document, perhaps adjacent to initials or a signature line.
Multiple IVCs can be generated for a document by using
differing portions of the document, and the IVCs may be
further processed before being associated with the document,
such as being excerpted, encrypted, or subject to passed
through a computation that can be ascertained at a later date.
For example, one IVC may represent the printable or print-
ably determinable characters of the entire document. Other
IVCs may represent portions of the document, including por-
tions defined by two points in the document, wherein the
points may include the first printable portion, page breaks,
and the final printable portion. In this manner, IVCs can be
generated for specific pages and cumulative portions, such as
from a starting point in the document to the end of a selected
page and from the start of a selected page to an ending point
in the document. These options are described in more detail in
the descriptions of FIGS. 13-15. Other options for associating
the original IVC with the original data sequence in block 109
are described below in the descriptions of FIGS. 3 and 4.

The operation of method 100 may be leveraged for mul-
tiple uses, including rendering printed documents tamper evi-
dent, improving the efficiency of computer storage mediums,
extending the life of hash algorithms in the presence of
increasing computational power and research intended to
identify collisions for spoofing the message digest after tam-

