
(12) United States Patent
Wilson

(54) DOCUMENT INTEGRITY VERIFICATION

(76) Inventor: Kelce S. Wilson, 1205 Terrace Mill Dr.,
Murphy, TX (US) 75094

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

(21) Appl. No.: 12/053,560

(22) Filed: Mar. 22, 2008

(65) Prior Publication Data

US 2008/0177799 Al luI. 24, 2008

(51) Int. Cl.
G06F 12/00 (2006.01)

(52) U.S. Cl. .. 7071201
(58) Field of Classification Search 707/201

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,233,340 Bl 5/2001 Sandru
6,549,624 Bl 4/2003 Sandru

6,792,110 B2 912004 Sandru

200210169971 Al * 1112002 Asano et al 713/193

2003/0023847 Al * 112003 Ishibashi et al. 713/169

1202

Text for

111111 111
US007676501B2

(10) Patent No.:
(45) Date of Patent:

US 7,676,501 B2
Mar. 9,2010

2003/0130032 Al * 7/2003 Martinek et al 463/29
2003/0145206 Al * 7/2003 Wolosewicz et al 713/176

* cited by examiner

Primary Examiner-Charles Rones
Assistant Examiner-Fazlul Quader
(74) Attorney, Agent, or Firm-Kelce S. Wilson

(57) ABSTRACT

A system and method enable reliable tamper detection for
printed documents. Embodiments determine whether tam­
pering has occurred and, if detected, isolate it to a specific
section, such as a single page of a multi-page document.
Embodiments render classes of documents tamper evident
with cryptographic level security, where such security was
previously unavailable, for example, documents printed
using common printers without special paper or ink. Embodi­
ments enable proving the date of document content without
the need for expensive third party archival, including docu­
ments held, since their creation, entirely in secrecy or in
untrustworthy environments, such as on easily-altered, pub­
licly-accessible internet sites. Embodiments can extend, by
many years, the useful life of currently-trusted integrity veri­
fication algorithms, such as hash functions, even when
applied to binary executable files. Embodiments can effi­
ciently identifY whether multiple docnment versions are sub­
stantially similar, even if they are not identical, thus poten­
tially reducing storage space requirements.

16 Claims, 15 Drawing Sheets

1200

~
1203

Text for demonstrating
demonstrating integrity verification integrity verification

1212

1210

~,-------~--------~

54 65 78 74 20 66 6F 72 20 64 65 6D 6F 6E 73 74
72 61 74 69 6E 69 6E 74 65 67 72 69 74 79
20 76 65 72 69 6E

r-------"---___,~1214
1216

~,-----------~----------~

1213

AC9B9E34

r--------'---___,~ 1215

54 65 78 74 20 66
72 61 74 69
20 76 65 72

72 20 64 65 6D 6F 6E 73 74
69 74 67 72 69 74 79

,-----_____ ----"'-----_____ ----;~ 1211

1207

~~----~---------,

u.s. Patent Mar. 9,2010 Sheet 1 of 15 US 7,676,501 B2

FIG. 1 100

~

Receive Original Document 101

I
Generate Original Data Sequence 103 -

I
Generate Modified Data Sequence 105

I
Generate Original IVC for Modified Data Sequence 107

I
Associate Original IVC with Original Data Sequence 109

u.s. Patent Mar. 9,2010 Sheet 2 of 15 US 7,676,501 B2

FIG. 2 200

~
I Receive Document Copy

I
Identify Section of Copy Corresponding
to Original Data Sequence ~

I
I Identify Original IVC gQ§. I

I
Generate Verification Data Sequence ~

I
I Generate Modified Verification Data Sequence ~ I

I
I Generate Verification IVC for Modified Verification Data Sequence ill I

I
I Compare Original IVC with Verification IVC m I

I
I Determine Integrity of Copy Section ~ I

u.s. Patent Mar. 9,2010 Sheet 3 of 15 US 7,676,501 B2

FIG. 3 300

~

1 Increment N 301 1

I Receive Nth Document 303 I

1 Generate Nth Data Sequence 305 1

1 Generate Nth Modified Data Sequence 307
1

I Generate Nth IVC for Nth Modified Data Sequence 309 I

1 Associate Nth IVC with Nth Document ~I

1 Compare Nth IVC with each (N-1)th IVC 313 1

Match? N

315

Y

1 Generate Difference Record 317 1

I Select Document for Deletion 319 I

Replace Deleted Document with Pointer
to Retained Document 321

u.s. Patent Mar. 9,2010 Sheet 4 of 15 US 7,676,501 B2

FIG. 4 400

~

Increment N 401

Generate Nth Data Sequence from Original Document 403

Generate Nth Modified Data Sequence 405

Generate Nth IVC for Nth Modified Data Sequence 407

Associate Nth IVC with Nth Modified Data Sequence 409

Associate Original IVCs with Original Document 411

u.s. Patent Mar. 9,2010 Sheet 5 of 15 US 7,676,501 B2

FIG. 5 500

~
1 Receive Document Copy 501 1

1 Increment N 503 1

Identify Section of Copy Corresponding
to Nth Original Data Sequence 505

1 Identify Nth Original IVC 507 1

I Generate Nth Verification Data Sequence 509 I

1 Generate Nth Modified Verification Data Sequence ill 1

1 Generate Nth Verification IVC for Nth Modified Data Sequence 513 1

I Compare Nth Verification IVC with Nth Original IVC 515 I

~Y 517

N

1 Generate Difference Report 519 1

u.s. Patent Mar. 9,2010 Sheet 6 of 15 US 7,676,501 B2

FIG. 6 600

~

Receive Data Sequence 601

Identify First Element 603 -

Identify Last Element or Criteria 605

Identify Modifiable Element Between First and Last 607

Delete or Substitute Identified Element 609

Done? N

611

Y

Send Modified Data Sequence to IVC Generator 613 -

u.s. Patent Mar. 9,2010 Sheet 7 of 15 US 7,676,501 B2

FIG. 7 700

~
Identify Whether Unprinted Characters Are In
ASCII Printably Determinable Character Ranges 701

In?
703

N

Identify Modifiable Elements
Using ASCII Values 705

y

Identify Modifiable Elements
Using File Format Codes 707

FIG. 8 800

~
Receive Document 801

I
Identify Data Sequences 803

I
Generate Original IVCs for Data Sequence 805

I
Append Original IVCs to Document 807

u.s. Patent Mar. 9,2010 Sheet 8 of 15 US 7,676,501 B2

FIG. 9 900

~

Receive Document 901

Identify Sections 903

Increment N 905

Generate Original IVCs for Sections (N-1), N, (N+ 1) 907

Append Original IVCs to Section N 909

N

y

Publish Document with Original IVCs 913

u.s. Patent Mar. 9,2010 Sheet 9 of 15 US 7,676,501 B2

FIG. 10 1000

~

I Receive Published Document 1001 I

I Generate Electronic Copy 1003 I

I Increment N 1005 I

Identify Sections of Electronic Copy Corresponding
to Sections (N-1), N, (N+ 1) 1007

Identify Original IVCs for Sections (N-1), N, (N+ 1) 1009 I

I Generate Verification IVCs for Sections (N-1), N, (N+ 1) 1011 I

I Compare Verification IVCs With Original IVCs 1013 I

~ y

1015
-.........../
N

I Generate Tamper Report 1017 I

u.s. Patent Mar. 9,2010 Sheet 10 of 15 US 7,676,501 B2

1100

1101

~
FIG. 11 ~

Electronic Document Generation
1102 1103

AB<space><space>CO< Tab>EF$YZ AB<Tab>CO<space><Tab>EF$YZ

1108 ~ Create Subset of Certain Elements

1112

41 42 43 44 45 46 24 59 5A

1114
1116 Generate IVC

4B210790 16F2D470 C0507E04 32CD09A2 F993C38B

Generate IVC 1115
1113

1105

~~------~------~
41 42 43 44 45 46 24 59 5A

1109

~r-----------~----------~
Create Subset of Certain Elements

1106 AB<space>CO<space><space>EF$YZ-...-1107

Optical Character Recognition (OCR)

u.s. Patent Mar. 9,2010 Sheet 11 of 15 US 7,676,501 B2

FIG. 12 1200

~
1202 1203

~ ~
Text for Text for demonstrating
demonstrating integrity verification integrity veri(jcation

I I • 1210 I Subset selection 1~1208
~ •

121 2 I Text for demonstrating integrity verification I

t
54 65 78 74 20 66 6F 72 20 64 65 6D 6F 6E 73 74
72 61 74 69 6E 67 20 69 6E 74 65 67 72 69 74 79
20 76 65 72 69 66 69 63 61 74 69 6F 6E

!
1~1214 1216 I Generate IVC

~ • I AC9B9E34 84B97C7C B96F1CFC 05B81E5F A3FA101D I

12

t
1~1215

l3 I Generate IVC

~ i
54 65 78 74 20 66 6F 72 20 64 65 6D 6F 6E 73 74
72 61 74 69 6E 67 20 69 6E 74 65 67 72 69 74 79
20 76 65 72 69 66 69 63 61 74 69 6F 6E

! ~1211

I Text for demonstrating integrity verification I
i ~1209

1207 I Subset selection I

~ i
Text for demonstrating integrity
verification

u.s. Patent Mar. 9,2010 Sheet 12 of 15 US 7,676,501 B2

1300

FIG. 13 ~

1302 1301 ~Third of five pages.

1304
1303

J ~
Page 3 ~of 5

8041EOE2 CC4~4C1O B066<i..3EC OE3~4855 OF4FFB56 C1OC4~5E ..
J))) J)
\ \ \ \ \ \

1305 1306 1307 1308 1309 1310

1400

FIG. 14 ~

1401 ~ .
Fourth of five pages. Extra material.

1402
1404

1403

/ ~
Page 4 "of 5

8041EOE2 OF4rFB56 CC46tClO AFE~72B7 B998F7Bl 39A20rC9 ..
J))) J)

\ \ \ \ \ \
1405 1406 1407 1408 1409 1410

1500

FIG. 15 ~
1501 ~ .

Fourth of five pages. Extra material.
1502

1504
1503

/ ~
Page 4 "'Of 5

8041EOE2 682~BA81 CC46iClO AFE~72B7 B998F7Bl 39A20rC9

? (((? (
1505 1506 1507 1508 1509 1510

u.s. Patent Mar. 9,2010 Sheet 13 of 15

FIG. 16

User Computer 1602
Printer

Document 1603

Intranet

Control node 1...§.QQ

IVC Generator 1610

Modification Rules 1611

File Parser 1612

Server

Security module

User Computer

PEDDaL node ~

IVC database 1614

Timing module 1615

Account database 1616

US 7,676,501 B2

1600

~

1604

Emaillnbox

Other Networks

u.s. Patent Mar. 9,2010 Sheet 14 of 15 US 7,676,501 B2

FIG. 17 1700

~
Document Section Select Modified IVC

~ 1701 ----- 1702 ---+ Generator 1704 r--

i
Type Identify Modification Rules

1703 r---+ 1705 ~

i
Layer counter

~ 1706

~ ~
Comparison Association /

1708 Alternate Channel
1707

u.s. Patent Mar. 9,2010 Sheet 15 of 15 US 7,676,501 B2

FIG. 18 1800

~
Computing Apparatus 1801

1

CPU
1802

1

Memory 1803

I Digital representation 1804 I

Modified IVC generator 1805

I Data sequence modifier 1807 I 1104

~
I 1808 I IVC Generator / "-

I
1\.\ DI I III

I 1809 I Modification rules I I

I Document processor 1806 I

1105

'--- - - ---

- - ---- - ---- - ---

US 7,676,501 B2
1

DOCUMENT INTEGRITY VERIFICATION

TECHNICAL FIELD

The invention relates generally to information assurance.
More particularly, and not by way of any limitation, the
present application relates to integrity verification of printed
documents.

BACKGROUND

Documents have long been subject to tampering and forg­
ery, such as when multi -page documents are subjected to page
substitution. In a multi-page document with a signature
appearing on fewer than all of the pages, a potential forger
may be able to create one or more pages that appear to belong
in the document, but yet have different content than is con­
tained in the original pages. The forger may then remove one
or more valid pages and substitute the newly-created ones.
For example, in a multi-page will, where the testator and
notary sign only on the final page, a forger may substitute one
of the previous pages with one containing plausible, yet dif­
ferent content. The movie Changing Lanes, released in 2002,
demonstrates the concept of forgery by page substitution,
although in that story line the document content was not
changed, but merely reformatted to be associated with a sig­
nature page from a different original document. The forged
document was then submitted to a court by an unethical
attorney, as a piece of evidence.

Some efforts to combat document tampering include hav­
ing the signer initial each page and drafting the document
such that sentences span page breaks. However, neither
method provides complete security. Many forgers are able to
falsely generate initials easily, generally more easily than
forging entire signatures. Widespread acceptance of photo­
copied versions of documents opens forgery to an even wider
set of people lacking talent for duplicating signatures, since a
small cut-out from a valid page containing the signer's initials

2
Solutions do exist for rendering digital computer files, such

as electronic document files, tamper evident. These com­
puter-oriented solutions predominantly use hash functions or
other integrity verification functions. A hash function, which
is an example of a one-way integrity verification function,
provides a way to verifY that a computer file, such as a pro­
gram, data file or electronic document, has not changed
between two separate times that the file has been hashed.
One-way integrity functions generally perform one-way

10 mathematical operations on a digital computer file in order to
generate an integrity verification code (lVC), such as a hash
value or message digest. This value may then be stored for
later reference and comparison with a subsequently calcu­
lated IVC, but is generally insufficient to enable determina-

15 tion of the file contents. A difference between two IVCs may
then provide an indication that the file contents had been
altered between the calculations. Hash functions are currently
widely-used in electronic signatures, for example in pretty
good privacy (PGP) electronic signatures, in order to render

20 digitally signed files tamper evident.
For example, if a file is created and hashed, anyone receiv­

ing a copy of that file at a later time may use a hash function
and compare the resulting second hash value against the first
hash value. For this to method to identify tampering, the same

25 hash function must be used both times, and the person com­
paring the hash values may insist on receiving the first hash
value through some other delivery channel than the one
through which the file to be verified was received. One way to
do this would be for an author of a digital file to hash the file,

30 store the result, and mail the file to a receiving party on a
computer readable medium such as optical media, including
a compact disk (CD) or a digital versatile disk (DVD) or
magnetic media, or non-volatile random access memory
(RAM). The receiving party hashes the file, stores the result,

35 and waits for a telephone call from the author to discuss the
two hash values. If, during transit, the media had been inter­
cepted and substituted with one containing an altered file, the
telephone conversation discussing the hash values would

on an intermediate page may be attached to a forged page 40

prior to photocopying. Spanning sentences across page
breaks merely requires that the forged content on the substi­
tuted page take up approximately the same printed space as
the valid content that is replaced.

reveal that the received file was different than the one sent.
Secure hash functions, such as MD5, secure hash algo-

rithm 1 (SHA-l) and SHA-2 family of hash functions, includ­
ing SHA-224, SHA-256, SHA-384 and SHA 512, have cer­
tain desirable attributes. For example, they are one-way, the
chances of a collision are low, and the hash value changes

A drastic solution of notarizing each page individually may
not be practical. Further, notarizing each page merely indi­
cates that each page had been signed by the proper person, but
without further measures, notarizing each page may not
ensure that all the pages were necessarily intended to belong
to the same document. That is, pages of different documents,
even if all individually notarized, could potentially be com­
bined to produce a new document that the author did not
intend to endorse as a single, complete document.

There has thus been a long-felt need for a system and
method for rendering printed documents tamper evident, such
that tampering and forgery may be easily detected. However,
there has been a failure by others to solve the problem without
requiring special inks and/or paper or the use of secret infor­
mation not available to an independent reviewer of the docu­
ment. If an obvious, workable solution were available,
authors of important documents, such as wills and other docu­
ments presenting attractive targets for forgery, would likely
have already adopted a solution in order to mitigate risk, thus
freeing the signer from the tedium of signing or initialing each
page of a long, multi-page document and other document
generators from the need for using expensive printing mate­
rials.

45 drastically for even minor file alterations. The one-way fea­
ture means that it is exceptionally unlikely that the contents of
a file could be recreated using only the hash value. The low
chance of a collision means that it is unlikely that two differ­
ent files could produce the same value. Drastic changes in the

50 hash value, for even minor alterations, make any alteration,
even the slightest, easily detectable.

This final feature has significant consequences when
attempting to use hash functions to verify the integrity of
printed documents. For example, an author may type "a b c"

55 as the entirety of an electronic document file and then hash it.
If the file were merely ASCII text, that is, it was not a propri­
etary word processor file, it could contain ASCII values {97
329832 99} in decimal, which would be {Ox61 Ox20 Ox62
Ox20 Ox63} in hexadecimal (hex). The message digest using

60 the SHA-l would then be {OxA9993A36 Ox4706816A
OxBA3E2571 Ox7850C26C Ox9CDOD89D}.

However, the printed version of the document would not
reliably indicate whether the letters were separated by simple
spaces or hard tabs. For example, another author may type

65 "a[Tab]b[Tab]c" as an electronic document file which, if it
were a simple ASCII text file instead of a word-processing
file, would contain ASCII values {97 9 98 9 99} in decimal

US 7,676,501 B2
3

and {Ox61 Ox09 Ox62 Ox09 Ox63} in hex. Based on the
horizontal spacing of the [Tab 1 during printing, the two
example documents might be indistinguishable in printed
form. The message digest of the tabbed file using the SHA-l
would be {Ox816EBDB3 OxE5Eld603 Ox41402A18
Ox09E2F409 OxD53C3742}. This is a drastically altered
value for differences that may have no significance regarding
the substantive content or the intended plain-language mean­
ing.

4
this number. For the SHA-l, the second set of changes does
not need to exceed 160 bits in order to force the SHA-l to
return any desired value, such as the pre-tampered value. 160
bits is not a large number, and is far exceeded by unused space
in typical word processing, audio, video and executable files.
Therefore, if a file is hashed with the SHA-l to determine an
original hash value, and a first set of changes is then made, a
second set of changes is possible that will cause the SHA-l to
return the same message digest as the original message digest

A printed document that is scanned by an optical character
recognition (OCR) system, or even carefully retyped by a
second person, can be expected to fail verification with stan­
dard hash algorithms when the hash value of the recreated file

10 for the unaltered file. Thus, the second set of changes is a
compensating set, because it compensates for the first set of
changes by rendering the SHA-l blind to the alterations. The
second set of changes may include appending bits to the file,
changing bits within the file, or a combination of the two. The is compared against the hash value of an electronic file origi­

nally used in the creation of the document. This can happen
even if the document is recreated exactly word-for-word,
because printing is a lossy process. That is, unprinted infor­
mation, such as fonnatting commands, metadata and embed­
ded data, is included in the hash value of the original elec­
tronic document file, but is entirely unknown when 20

converting a printed version of the document back into
another electronic file that can be hashed.

15 compensating set of changes, however, may affect a set of bits
larger than the message digest, and in some cases, this may
ease the computational burden and/or make the compensating
set of changes harder to detect.

There are two typical prior art responses to the suggestion

Even if a file is distributed electronically, the presence of
formatting commands and a proprietary file fonnat may still
present a problem. For example, if a document is hashed, and
then scrubbed to remove metadata or other data, the hash
value will be different, even if the substantive content is not
altered. Or possibly, a file could be opened without the con­
tent being altered, but the meta data might change to reflect
that the document had been accessed. In such a case, a stan- 30

dard hash function would be useless for detecting changes to
the document content, because the hash value can be expected

of this vulnerability: The first is that the SHA-l and other hash
algorithms have been specifically designed to make calcula­
tion of a compensating set of changes computationally infea­
sible. However, due to advances in computational power and
widespread study of hash algorithms, such calculations may

25 not remain computationally infeasible indefinitely. A second­
ary response is that the compensating set of changes should be
easily detectable, because they may introduce patterns or
other features that do not comport with the remainder of the

to be significantly different, even if not a single change were
made to the printed portion of the document.

Using a standard hash algorithm, therefore, would be use- 35

less when only a printed version of a document is available,
because the hash value verification would be expected to fail,
even if the printed document was completely intact and free
from any changes. Thus, despite the long-felt need for a
system and method for rendering printed documents tamper 40

evident, even widespread use of highly-secure digital file
integrity verification systems has not yet produced a solution
for documents printed on paper. The systems and methods
widely used for digital files are simply inapplicable to printed
documents, and prior art systems and methods fail to address 45

the problem, even partially.
Unfortunately, a problem exists even for the use of hash

functions with computer files. Recent advances in computa­
tional capability have created the possibility that collisions
may be found for hash algorithms that are trusted today. For 50

example, the SHA-l produces a 160-bit message digest as the
hash value, no matter what the length of the hashed file may
be. Thus, the SHA-l has a vulnerability, which is shared by all
hash algorithms that produce a fixed-length message digest.

If a first set of changes is made to a file, a second set of 55

changes, if detenninable, may be made to compensate for the
first set of changes, such that a hash value calculated after
both sets of changes are made is identical to the hash value
calculated prior to any changes being made. This renders the
use of the hash function unable to identify the alteration. 60

There is, however, a requirement for exploiting this vulner­
ability: The altered file needs to contain enough bits to include
both the first set of changes and a second set of compensating
changes. The theoretical limit for the maximum number of
bits necessarily affected by the second set of changes is the 65

length of the message digest, although in practice, a second
set may be found in some situations that requires fewer than

file.
Unfortunately, though, the secondary assumption, even if

true, is not entirely useful. This is because a primary use of
hash functions is for integrity verification of computer files
intended for computer execution and as data sets for other
programs. Both types of files typically use predetermined
formats that contain plenty of surplus capacity for concealing
the compensating set of changes. For example, executable
programs typically contain slack space, which are regions of
no instructions or data. Slack space is common, and occurs
when a software compiler reserves space for data or instruc­
tions, but does not use the reserved space. Often slack space
is jumped over during execution. Thus, changes made to some
sections of slack space, including the introduction of arbitrary
bits, may not affect execution, and therefore will remain
undetectable.

A software program may potentially be altered using a first
set of changes to the executable instructions, such as adding
virus-type behavior or other malicious logic, and a compen­
sating set of changes may be made in the slack space. The
compensating set of changes renders the first set of changes
undetectable to the hash algorithm, while the compensating
set itself remains undetectable because it is in the slack space,
and is neither executed nor operated on to produce anomalous
results. A covertly altered program may therefore be run,
mistakenly trusted by the user, because it produces the correct
hash value but does not exhibit any blatantly anomalous
behavior.

Similarly, word processing, audio and video files typically
have surplus capacity that exceeds the minimum needed for
human understanding of their contents. For example, propri­
etary word processing files, such as * .DOC files, contain
fields for metadata, formatting commands, and other infor­
mation that is typically not viewed or viewable by a human
during editing or printing. This surplus capacity often
exceeds the message digest length of even the currently­
trusted set of hash functions. Thus, a first set of changes could
be made to the portion of the file having content that is to be

US 7,676,501 B2
5

printed, heard or viewed, while the compensating set of
changes could be made within the surplus capacity.

6
Excluding certain portions of a digital file from a hash

value calculation removes hiding places for compensating
changes, thereby either rendering tampering evident, or forc­
ing the compensating changes into a predetermined portion of
the file. This may enable detection of the compensating
changes by other methods, such as a human reading of printed
characters, or execution of central processing unit (CPU)
instructions. Embodiments tolerate changes to a file, using a
deterministic rule set for selecting regions for which changes

Another issue, which could use improvement, is version
control of documents for reducing wasted space in file sys­
tems on storage media. During the course of computer usage,
multiple identical copies of some files may be stored on a file
storage system in different logical directories. When backing
up, compressing, or otherwise maintaining the storage sys­
tem, such as copying a hard drive to optical media or purging
unneeded files, it may be desirable to avoid copying or retain­
ing duplicate files that waste media space.

For example, if a computer user faces the prospect of
running out of storage space, the user may wish to delete
duplicates of large files. If a single file is present in many
directories, a user may create a search that spans the multiple
directories, and look through the resulting list for duplicated
names and dates. If storage space is low, it may be preferable
to copy or retain only one of the files. Unfortunately, such a
plan suffers from multiple challenges, including search time
for duplicates, and missed opportunities for using shortcuts.
Further, if two files having identical content, but different
names, and which were put on the storage medium at different
times, common name and date search methods would not
identify them as identical. Thus, storage space would be
unnecessarily wasted.

10 are to be tolerated. This currently goes directly against the
prevailing paradigm of hash function usage, because omitting
sections from integrity verification is an invitation to tamper
the omitted sections. The prevailing paradigm emphasizes the
detection of any changes at all to a file. Effectively, this

15 proposition is fundamentally at odds with current implemen­
tations of hash function security protocols, although a layered
IVC approach, in which multiple IVCs are calculated, some
covering an entire digital file, and others covering only con­
tent-dictated portions, such as by omitting slack space, can

20 provide not only full file protection, but superior protection
over the prior art single-layer hash function calculations.

Embodiments hash only a subset of the characters of an
electronic file or document. Some embodiments may only
hash printable characters, whose presence and order can be

SUMMARY

25 determined with certainty from a printed version. For
example, ASCII codes, such as from 33 to 94 and 97 to 126 are
the computer representation of most printable letters, punc­
tuation, and numbers in the English language. Characters,
formatting commands, metadata, and other elements of a first

By creating a system that violates a fundamental rule of
common integrity verification systems, the expected failure
verification for a printed document can be prevented, thereby
reducing false alarms to a level which enables tamper detec­
tion of printed documents. Printed documents may now be
rendered tamper evident with cryptographically strong meth­
ods such as hash functions. Verifying the integrity of printed
documents, by using an embodiment of the invention,
requires operating entirely outside the standard paradigm of
digital security: A predefined subset of document elements,
which may be expected to be undeterminable from a printed 40

version of a document, are excluded from the initial calcula­
tion of an integrity verification code (lVC) while the docu­
ment is in electronic form. For example, metadata, tabs,
spaces, special characters, formatting commands, and the
like, may be excluded from a hash value calculation. Upon a 45

later recreation of a second digital form of the document, for
example by scanning or retyping the printed version of the
document into a computer, a subset of document elements is
excluded from the second calculation of an IVe. Thus, even if
the first and second digital forms of the document are differ- 50

ent, if only a common subset of document elements, such as
printed characters, are used in the calculations of the IVCs, a
match may be expected when the printed version of the docu­
ment has not been altered.

Printed and imaged documents may now be rendered
tamper evident, at least with regard to substantive content.
Risks of some non-literal document changes, such as font,
spacing, alignment, and other formatting commands, may
need to be tolerated. However, a degree of content verification

30 electronic document that cannot be exactly reproduced by
manually retyping a printed version of the first document into
a second electronic document are excluded from the hash
function in some embodiments, in order to prevent ambiguity
when a recreated electronic document is hashed. The use of

35 only printed characters in some embodiments, and the exclu­
sion of uncertain characters and other file content that is lost
during printing, allows reliable recreation of a hash value
from a printed version of a document.

Embodiments may hash only a subset of the characters of
a file, and apply a consistent rule for other characters. For
example, all separations between characters, such as spaces
and tabs, may be represented by a pre-selected character, such
as a single space, even where multiple spaces may possibly be
ascertainable. Embodiments exclude at least a portion of
unprinted content, such as metadata, or other data that may be
unrelated to the substantive content of the document.

Aspects of the invention also relate to computer commu-
nication using cryptography for purposes of data authentica­
tion and computer program modification detection by cryp­
tography. Aspects of the invention further relate generally to
database and file management and to file version manage-
ment and computer media storage optimization.

The foregoing has outlined rather broadly the features and
technical advantages in order that the description that follows

55 may be better understood. Additional features and advantages
will be described hereinafter which form the subject of the
claims. It should be appreciated by those skilled in the art that
the conception and specific embodiments disclosed may be
readily utilized as a basis for modifying or designing other

60 structures for carrying out the same purposes. It should also
be realized by those skilled in the art that such equivalent
constructions do not depart from the spirit and scope of the
invention as set forth in the claims. The novel features which

is now possible for printed documents that had not previously
been available. Additionally, near duplicate files may be
found rapidly, by comparing IVCs of substantive content,
which ignore unimportant changes. Further, hash function
reliability may be improved by eliminating hiding locations
for compensating changes in the event that an electronic 65

document, or digital file, is tampered and the tampering is
compensated for.

are believed to be characteristic of the invention, both as to its
organization and method of operation, together with further
objects and advantages will be better understood from the
following description when considered in connection with

US 7,676,501 B2
7

the accompanying figures. It is to be expressly understood,
however, that each of the figures is provided for the purpose of
illustration and description only and is not intended as a
definition of the limits of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven­
tion, reference is now made to the following descriptions
taken in conjunction with the accompanying drawings, in
which:

FIG. 1 illustrates a flow diagram for a method of generating
an integrity verification code (lVC) for a document;

FIG. 2 illustrates a flow diagram for a method of ascertain­
ing the integrity of a document, using an IVC generated in
accordance with the method of FIG. 1;

FIG. 3 illustrates a flow diagram for a method of conserv­
ing digital file storage space, using an IVC generated in
accordance with the method of FIG. 1;

8
tampering is detectable, independent of whether the tamper­
ing itself is easy or difficult to accomplish.

Multiple types of documents may benefit from being ren­
dered tamper evident, including those printed on paper,
etched, or otherwise rendered on any medium. Digital docu­
ment images, for example PDF documents and/or other digi­
tal files stored in an image-based and/or pixilated format, and
other exchange format documents, such as XPS documents,
may also be rendered tamper evident, at least with regard to

10 substantive content of the digitally-renderable images.
According to the prior art paradigm of document integrity

verification, there are three states of a scanned document.
State 1 is the original electronic rendering. State 2 is the
printed version, which is missing information relative to State

15 1. State 3 is the recreated electronic version, created by scan­
ning the State 2 version. State 3 has extra information, much
of which is error prone and potentially random, when pre­
dicted at the time of creation of the State 1 version of the

FIG. 4 illustrates a flow diagram for a method of improving 20

the reliability of integrity verification, using an IVC gener­
ated in tandem with the method illustrated in FIG. 1;

document. States 1 and 3 are almost certainly different, and
thus cannot be tested by the same integrity verification func­
tion in order to ascertain the integrity of the State 2 version. A
new paradigm adds the following: There exists a fourth state,
State 4 of the document, which can be derived from State 3 by
eliminating all of the potentially erroneous information added
by the transition from State 2 to State 3, as well as a safety
margin of sacrificial material. State 4 is also derivable from

FIG. 5 illustrates a method of ascertaining tampering in
tandem with methods illustrated in FIGS. 1 and 4;

State 1, which can be identified as State 4-prime. Therefore,
the integrity verification process can be performed to com­
pare State 4 against State 4-prime, which can be a reliable

FIG. 6 illustrates a method for generating a modified data 25

sequence compatible with the method illustrated in FIG. 1;
FIG. 7 illustrates a method for identifying a modifiable

document element compatible with the method illustrated in
FIG. 6;

30 comparison, in order to infer the integrity of State 2, within a
predetermined tolerance that allows for some variation.

FIG. 8 illustrates a method for associating an IVC with a
document, compatible with the method illustrated in FIG. 1;

FIG. 9 illustrates another method for associating an IVC
with a document, compatible with the method illustrated in
FIG. 1;

FIG. 10 illustrates a method for using IVCs to identify
document tampering, compatible with the method illustrated
in FIG. 9;

FIG. 11 illustrates a functional block diagram of an
embodiment of a document integrity verification system;

FIG. 12 illustrates another functional block diagram of an
embodiment of a document integrity verification system;

FIG. 13 illustrates an intact page from a tamper evident
printed document;

FIG. 14 illustrates a tampered page from a tamper evident
printed document;

FIG. 15 illustrates another tampered page from a tamper
evident printed document;

FIG. 16 illustrates an embodiment ofa system for creating
a public database ofIVCs;

FIG. 17 illustrates another functional block diagram of an
embodiment of a document integrity verification system; and

FIG. 18 illustrates a diagram of an embodiment of a docu­
ment integrity verification apparatus.

DETAILED DESCRIPTION OF THE INVENTION

The exclusion of elements of a digital computer file from a
hash value calculation process runs counter to the current
paradigm for the use of hash functions. The current use for

35 hash functions is for detecting any change at all to a file, no
matter how small the change may be. Excluding elements
from hashing prevents detection of many forms of alteration,
and for the traditional uses of hash functions in computer
security, such a result is unacceptable. This is because hash

40 functions such as the MD5, secure hash algorithm 1 (SHA-l)
and SHA-2 family of hash functions, and cyclic redundancy
checks (CRCs), are often used for virus detection and tamper
detection. Excluding metadata in a word processing file from
a hash value could enable malicious software to inhabit the

45 file or allow someone to access and edit the file without
detection. Thus, current implementations for hashing com­
puter files for tamper detection typically include all of the bits
in a file, whether printed or not for word processing files, and

50

whether operated upon or not for binary executable files.
Embodiments allow verification that a multi-page printed

document has not been subjected to page substitution forgery
by enabling reliable integrity verification of the substantive
document content. This is accomplished by excluding
sources of expected false alarms, such as unprinted and/or

55 ambiguous information, that could render a traditional hash
function integrity check useless. In operation, a document
author could hash a document in accordance with an embodi­
ment of the invention and print the hash value on each page of Terms are often used incorrectly in the information assur­

ance field, particularly with regard to tamper detection. For
example, the term "tamper proof' is often used incorrectly. A 60

tamper proof article is effectively impervious to tampering,
which is often described as unauthorized alteration. Few
articles qualifY for such a designation. "Tamper resistant" is
also often used incorrectly when a more appropriate proper
term would be "tamper evident". A tamper resistant article is 65

one for which an act of tampering is difficult, although pos­
sible, to accomplish. A tamper evident article is one for which

the document. A later reader of the document could perform
an optical character recognition (OCR) procedure on the
printed document to produce a recreated electronic version,
hash the recreated electronic version in accordance with an
embodiment of the invention, and compare the printed hash
value with the hash value for the recreated electronic version.

Prior art hash functions would not be useful in such a
mauner, since the two values used for comparison would
almost certainly be different. However, embodiments of the

US 7,676,501 B2
9

invention could enable a reliable comparison without the
likelihood of a false alarm that would result from using a
traditional hash paradigm.

FIG. 1 illustrates a flow diagram for a method 100 of
generating an integrity verification code (lYC) for a docu­
ment. Method 100 may be performed with any electronic
document, whether intended to be printed, etched, rendered
on any permanent or semi-permanent medium, saved in a
graphical image or common publishing fonnat, saved in a
printer-ready file, presented in a humanly-viewable format on 10

a display, used as a data source by a computing device, or used
to furnish computer-executable instructions to a computing
device. In block 101, an original document is received, either
in electronic fonnat as a digital representation, possibly
through an electronic message communication, a facsimile or 15

on a computer readable medium such as a magnetic or optical
storage device or volatile or non-volatile memory, or in a
non-electric format, such as printed or etched.

In block 103, an original data sequence is generated to
represent the contents of the original document. In some 20

embodiments, the data sequence is generated by scanning a
document and perfonning an optical character recognition
(OeR) process, in other embodiments, the data sequence
could be generated by retyping a document received in a
printed fonnat, in other embodiments, the data sequence 25

could be generated by reading a document from a computer
readable medium, and in other embodiments, the original
data sequence could represent the contents of an electronic
document, i.e., a digital representation of a document, which
is already in a computer memory. In some embodiments, if an 30

electronic document contains elements in a class of elements
that will be excluded from the later-generated modified data
sequence, the original data sequence will be the subset of
document elements beginning and ending with elements that
will remain unmodified in the modified data sequence. In 35

some embodiments, generating the original data sequence
includes determining the file type and parsing or processing
the document for type-relevant content. For example, a word
processing document may be parsed to distinguish between
metadata and user-editable content that is to appear in a 40

printed or published version of the document. In some
embodiments, content of document and footers, even if edit­
able by a user, are excluded from the original data sequence.
A binary executable file may be parsed and/or analyzed by a
software analysis tool, such as a disassembler, that distin- 45

guishes between data-only sections and sections containing
executable instructions. In some embodiments, generating
the original data sequence comprises identifYing the entire
digital file, whereas in other embodiments, generating the
original data sequence comprises selecting a portion, less 50

than all, of the digital file, which contains selected type­
specific elements such as printed characters or machine lan­
guage instructions.

10
carded, for example, lower case characters in the original data
sequence may be made upper case in the modified data
sequence. Such modification is lossy, because the original
data sequence cannot be regenerated from the modified data
sequence. Lossy modification prior to integrity verification
works against the prevailing paradigm of integrity verifica­
tion, because changes can be made in the document that are
undetectable.

Elements of a document includes bits and bytes needed for
editing, printing, displaying, managing, and executing,
including the binary representations for individual letters,
punctuation, characters, spaces, tabs, line feeds, fonts, for­
matting, hyperlinks and more. At a higher level of abstraction,
elements could include words, paragraphs, sections and chap­
ters. A subset of the elements ofa document is any collection
of the elements of a document, such that there is at least one
element in the document that is not in the subset. It should be
noted that, while any single subset cannot make up the entire
document, two or more subsets could contain all of the ele­
ments of the document.

In block 107 an lye is generated for the modified data
sequence, and in block 109, the lye generated for the modi­
fied sequence is associated with the original data sequence.
This operates outside prior art paradigms for document secu­
rity, in which integrity verification is intended to allow iden­
tification of any changes to a document. The key, however, is
that the rules for generating the modified data sequence from
the original data sequence are deterministic, and either com­
municated with certainty communication or are determinable
with a limited number of trials.

The lye, therefore, is not calculated from the original data
sequence, but instead from a modified data sequence, which
has at least one element, between a first and final element,
which is different from, or omitted from, the original data
sequence. This is another violation of the prior art paradigms
for document security, because in some embodiments, the
lye is calculated after internal content changes, such as
substitutions and omissions, are made to a data sequence, and
associated with the uumodified data sequence. Thus, in those
embodiments, the lye is not calculated using the data
sequence with which it is associated. In some embodiments,
associating an lye with the original data sequence comprises
inserting the lye into the electronic document from which
the data sequence was generated. In some embodiments,
associating an lye with the original data sequence comprises
inserting the data necessary from printing the lye on the
document into a printer data stream or publishing fonnat file,
such that the lye appears on a hard copy printed version of
the document or in the published format file.

From an information theory perspective, if the rules used to
generate the modified sequence are determinable, then the
modified data sequence is reproducible, and an lye gener­
ated with the modified sequence can be used to verifY the In block 105, a modified data sequence is generated with a

lossy process, by excluding certain elements within the origi­
na� data sequence, i.e., at least one element between the first
and last element of the original data sequence is omitted or
substituted when generating the modified data sequence. The
lossy process for printed documents is intended to exclude
any elements in the original document which cannot be ascer­
tained with certainty. The processes used in block 105 are
selected such that the output from block 105 will be the same

55 integrity of at least a portion of the infonnation contained in
the original document. The result is that, because the modi­
fication rules pennit the loss of infonnation, alterations to at
least some portions of the original document may be indis­
cernible, if they are confined to the lost portions of the original

as the output from equivalent processes used later. In general,
the modified data sequence will be shorter than the original
data sequence, but in any case, will have at least one element
that is different, either by substitution or omission. In some
embodiments, capitalization information may further be dis-

60 data sequence. Thus, slightly different versions of an original
data sequence could produce the exact same modified data
sequence. For example, in some embodiments, a first original
data sequence D1, using three spaces to indent at the begin­
ning of a paragraph, a second original data sequence D2,

65 using tab characters to indent at the beginning of a paragraph,
and a third original data sequence D3, using fonnatting com­
mands to indent at the beginning of a paragraph, could all

US 7,676,501 B2
11

produce identical modified data sequences if the substantive
content of D1, D2 and D3 were similar enough.

In some embodiments, the rules for creating a modified
data sequence could include replacing any combination of tab
characters (ASCII 9) and/or series of spaces (ASCII 32) and/
or other preselected character patterns in the original data
sequence with a single space (ASCII 32), or omit the tabs and
spaces entirely, resulting in only printable ASCII characters
remaining in the modified data sequence. A space between
printable characters, whether due to a space, a tab, or a com­
bination, my be printably determinable, because the existence
of a gap, i.e., a horizontal displacement exceeding the hori­
zontal displacements between other pairs of adjacent printed
characters, may be ascertained. Multiple tabs and spaces,
however, are unlikely to be determinable with certainty, as are
spaces and tabs at the beginning of a line, since an indention
may be due to formatting commands, rather than a user-typed
character. Line justification, which introduces additional
spaces between words or letters, in order to cause a printed
line to start and end at specified margins, can complicate
efforts to determine the number of spaces between printed
characters. Other issues complicating the determination of
the existence of spacing characters is when a tab setting
places a character close to the same location it would have
been placed without a tab and colunm spacing in a multi­
colunm document could be confused with spacing between
words. To reduce the colunm spacing ambiguity, the rules for
generating the modified data sequence for a document, which

12
The hash function may be any combination of the MD5, the
secure hash algorithm 1 (SHA-l), any of the secure hash
algorithm 2 (SHA-2) family of functions, or any other suit­
able one-way function. Although blocks 103-109 are illus­
trated in a manner that indicates subsequent processes, it
should be understood that the processes denoted by blocks
103-109 may be conducted as overlapping in time. For
example, as a document is typed, a function of a word pro­
cessor may send portions of the document to a parser and then

10 a one-way function, such as a hash function, in order to
continually update the current IVC displayed in the document
footer, possibly along side a page number. Further, if the
document is large, it may be wasteful to generate the entire
modified data sequence in memory. Rather, sections of the

15 original data sequence may be modified on an as-needed basis
for the IVC generation, cycling through the processes of
blocks 105 and 107, such that the processes of blocks 105 and
107 are effectively simultaneous. Hash functions typically
operate on predetermined block sizes, which are often smaller

20 than the document being hashed. For some embodiments of
method 100, sections of the original data sequence may be
modified in a buffer to create portions of the modified data
sequence with a length that is a multiple of the hash function
block size. The same buffer location in memory may be

25 reused for subsequent portions of the document, in order to
save memory usage. Thus, the entire modified data sequence
may not exist in memory all at a single time if method 100 is
implemented in a manner to save computer memory, but
rather is generated in sections for use by the IVC generator.

Associating the original IVC with the original data
sequence in block 109 can include printing a portion of the
IVC on the document, such as printing a portion of a hash
function value, often called a message digest, on a page
relating to the original data sequence. In some embodiments,

is to be printed for human reading in a multi -colunm format,
may need to be processed to re-order the words as they would 30

be interpreted by an OCR process that did not take into
account the colunms when creating an electronic version of
the document. The combination of a carriage return and a line
feed may be printably determinable, as is a page break. Print­
ably determinable elements include printable elements, as
well as elements whose existence may be determined from a
printed version of a document. However, page and line break
characters in a document are generally not determinable from

35 a document signer or endorser can write an IVC by hand onto
the document, perhaps adjacent to initials or a signature line.
Multiple IVCs can be generated for a document by using
differing portions of the document, and the IVCs may be
further processed before being associated with the document, a printed version of the document, because the word wrap­

ping function of a word processor or other program used to
generate a document introduces such elements automatically,
often without the document author typing corresponding
characters. Some embodiments may recognize a binary value
within a printable range of ASCII characters as an unprinted
formatting mark, based on the document type, such as the
</p> paragraph formatting identifier in an html document. In
such embodiments, the rules for generating the modified data
sequence will permit identification of unprinted, or unpub­
lished, document elements by a file parser based on reserved
identifiers for certain document types, for example angle
braces in html and xml documents.

40 such as being excerpted, encrypted, or subject to passed
through a computation that can be ascertained at a later date.
For example, one IVC may represent the printable or print­
ably determinable characters of the entire document. Other
IVCs may represent portions of the document, including por-

45 tions defined by two points in the document, wherein the
points may include the first printable portion, page breaks,
and the final printable portion. In this manner, IVCs can be
generated for specific pages and cumulative portions, such as
from a starting point in the document to the end of a selected

50 page and from the start of a selected page to an ending point
in the document. These options are described in more detail in
the descriptions of FIGS. 13-15. Other options for associating
the original IVC with the original data sequence in block 109

In some embodiments, each element in the original data
sequence will be subject to a determination of retain, omit, or
modifY. Retained elements pass through to the likely shorter
modified data sequence. Between the first and final retained 55

elements, at least one element will be omitted or modified. In
some embodiments, the modification rules may be kept secret
for a party which intends to monitor a file on a computer
storage system for modification, such as for virus or hacker
penetration determination. For some embodiments, custom
rule sets will be communicated between a limited number of
parties. For some embodiments, modification rules will be
published openly.

are described below in the descriptions of FIGS. 3 and 4.
The operation of method 100 may be leveraged for mul-

tiple uses, including rendering printed documents tamper evi­
dent, improving the efficiency of computer storage mediums,
extending the life of hash algorithms in the presence of
increasing computational power and research intended to

60 identify collisions for spoofing the message digest after tam­
pering, and the enhancing time-stamping of documents in
order to more easily prove their existence as of a certain date.
That is, violation of a fundamental paradigm of integrity
verification functions provides for multiple exploitable, The original IVC generated for the modified data sequence

in block 107 may be an integrity verification function result,
such as a hash value or a checksum, which typically has fewer
bytes than the data sequence for which the IVC is generated.

65 advantageous benefits.
FIG. 2 illustrates a flow diagram for a method 200 of

ascertaining the integrity of a document, using an IVC gen-

US 7,676,501 B2
13

erated in accordance with method 100. Methods 100 and 200
may be used with any printed, etched or otherwise published
document, including digital representations of documents in
image and rastered formats, for example bitmaps, jpegs and
fax bitstreams, and/or a common document publishing for­
mat, for example PDF and XPS documents and their equiva­
lents. After an embodiment of method 100 renders a docu­
ment tamper evident, embodiments of method 200 identify
whether tampering of a document copy has occurred. In block
201, a copy of a document is received. The document will
have at least one ICV associated with it, possibly printed in a
document footer, header or appendix, although the IVC may

14
embodiments, other document portions may be excluded
from the identified section, such as title pages, indexes,
appendices, page numbers, inline images, or other selected
contents of footers and headers. The exclusion of textual
information from document headers and footers is optional,
and based on the desired engineering and implementation
details desired for a particular integrity verification system.
This information will not need to be included in every case.
For example, method 200 can be tried iteratively with differ-

10 ing likely rule sets, some of which include page numbers and
some of which exclude page numbers. The IVCs from various
trials can be used as a comparison, and if one of them
matches, then the original rule set has been reverse-engi-be stored extemally from the document for some embodi­

ments. If the document is only in a hard copy form, such as a
printed or etched form, it may require scanning or retyping in 15

order to be converted into an electronic format. Some docu­
ments may be received in a non-textually editable electronic
format, such as a facsimile data stream, an image file, a
publishing file format, or a printer file stream. The electronic
version will require some form of text extraction, such as, for
example, an OCR process, in order to identifY the substantive
content of the document. In some embodiments of method
200, formatting commands, such as font selection and inden­
tions, are often not considered to be part of the substantive
content. Documents in multi -column format may require fur­
ther processing in order to recreate the proper word order after
scanning.

neered, based on trial rule set that worked.
Some documents may have multiple IVCs corresponding

to different portions of a document. For example, a document
may have printed in the footer of each page an IVC corre­
sponding to each of: the entire document, the current page, the
preceding page, the following page, the cumulative portion of

20 the document starting at the begiuning and going through the
end of the current page, and the cumulative portion of the
document starting at the beginning of the current page and
going through the end of the document. These options are
described in more detail in the descriptions ofFI GS. 13 -15. In

25 the event that multiple IVCs are used with a document, blocks
203 through 215 of method 200 may be repeated for as many
of the IVCs on as many of the pages as is desired. In some
embodiments, the position of an IVC within a document
footer identifies its relevance to a portion of the document.

An OCR process, as well as manual retyping, is unlikely to
reproduce a character sequence that is identical to the origi­
nally-typed document, due to ambiguity over spaces versus
tabs, colunm formatting, page margin changes, and paragraph
indentions. Thus, the recreated electronic document version
can be expected to differ from the original electronic docu­
ment version. For prior art integrity verification methods,
such expected differences are almost certain to result in a
different IVC calculation for the recreated electronic docu­
ment, even when the document is perfectly intact, with no
changes. The high probability offalse alarms renders prior art
methods of integrity verification for hard copy document
integrity functions effectively unusable.

However, since the original IVC (or multiple IVCs) asso­
ciated with the document were created using lossy modifica­
tion rules that produced a modified sequence (or sequences),
the same or similar rules applied to the recreated electronic
document can reproduce the same modified sequence (or
sequences). This cuts down the false alarms and allows use of
IVCs with hard copy documents that require recreation of
electronic versions. Thus, with the proper selection of modi­
ficationrules, the original electronic version and the recreated
electronic version are two of the plurality of electronic ver­
sions that will produce the same set of IVCs. Tampering, or
other permissible changes, which moves the document
among the different versions that all will produce the same
IVCs, may not be detectable within method 200, but instead
may require additional testing. This is because the combina­
tion of methods 100 and 200 is intentionally blind to likely
differences, arising from recreation of an electronic docu­
ment from a hard copy document. This is a trade-off for
enabling document integrity verification in situations in
which it was previously unavailable.

In block 203, the section of the document copy is identified,
which corresponds to the original data sequence being tested.

30 For example, the IVC for the entire document may be listed
first, followed by the IVC for the current page, followed by
the IVC for the following page, although other orders may be
used. In some embodiments, the formatting and number of
the IVCs used may be determinable according to a published

35 set of rules. For example, a single page document will have
only a single IVC, a two page document will have three IVCs
on each page, and a three or more page document will use six
IVCs on each page. The IVC appearing on the page may be
only a portion of the entire calculated IVe. For example, if the

40 SHA-l is used, the IVC printed on a document may only be
the final 8 bytes of the message digest.

For purposes of describing FIG. 2, the example of a printed
five page document will be used. A recipient is provided with
a copy of the document and notices that six IVCs appear in the

45 footer of each page. The first IVC on each page is identical,
and corresponds to the IVC for the entire document. The
recipient scans the document to produce an electronic ver­
sion, thus completing block 201. The first IVC to be repro­
duced for integrity verification purposes is the IVC corre-

50 sponding to the entire document. The entire document,
possibly omitting a cover page and appendices, is identified
as the section corresponding to the original IVC in block 203.
In some embodiments however, the integrity test may apply to
only a relatively small portion of a document. In block 205,

55 the IVC is identified, possibly from a plurality of IVCs in a
document footer, or else is provided from outside the docu­
ment. In some embodiments, if an IVC had been written by
hand, it IVC may be typed in by user input or subjected to a
handwriting interpreter. In block 207 the recreated electronic

60 document version is used to generate the verification
sequence, such as by identifying the first and final printable
characters in the OCR'd document. When the section to be
tested for integrity is a single page, the process of generating In some embodiments, the identified section will exclude the

document footer. If only a single IVC is provided for the
entire document, the section of the copy is likely to be the 65

entire document, minus any IVC appearing on the pages, any
possibly other content of footers and headers. In some

the verification sequence includes identifYing document ele­
ments between page breaks, whether soft or hard.

In block 209, a modified verification data sequence is gen­
erated from the verification data sequence, similar to the

US 7,676,501 B2
15 16

original IVC and the IVC generated for verification purposes
are generated for the verifiable state. The key is that the
modification rules applied to each starting state should be
lossy in such a manner that each modification process, in
methods 100 and 200, produces the same ending state.

FIG. 3 illustrates a flow diagram for a method 300 of
conserving digital file storage space, thus improving the effi­
ciency of computer storage mediums, using an IVC generated
in accordance with method 100 of FIG. 1. The utility of

process used in block 105 of method 100, as shown inFIG.1.
The modification process used in block 209 is also lossy, but
intended to be so, in order to match the output of the modifi­
cation process used in block 105. Thus, the combination of
blocks 105 and 209 enable generation of matching IVCs, even
with different inputs. If the modification rules have been
published or otherwise communicated, these are used. Oth­
erwise, blocks 203 through 215 will need to be iterated with
multiple guesses of the modification rule options, until a set of
modification rules is found that allows recreation of a major­
ity of individual page IVCs. However, for this current
example, the document recipient is provided with a set of
modification rules that would enable the recreation of the
modified sequence, if the document was actually intact. In
block 211, an IVC is generated for the modified verification
data sequence using the same algorithm as was used in block
107 of method 100. If the specific algorithm used in method
100 is not communicated to the document recipient, several
integrity verification algorithms may need to be tested. Such
testing is typically more reliable using multiple single page
IVCs for a multi-page document and, if the majority of them
indicate the same integrity verification algorithm, that algo­
rithm should be the one used for an integrity decision.

10 method 100 extends beyond the use of rendering documents
tamper evident, and thus may be used for additional purposes.
In some embodiments, IVCs have uses beyond detection of
malicious tampering, such as for determining whether two
files are substantially similar. This aids efficiency in storage

15 and backing up files, because it enables rapid detection of
similar, but not identical files.

When similar, but not identical files are detected, a file
version control process can then examine the detected files
and determine whether it would be preferable to keep both

In block 213, the original IVC and the newly calculated
IVC are compared. In some embodiments, only a portion of
the original IVC is provided for comparison. In block 215, an
integrity decision is made using the results of the comparison

20 versions as full, separate files, or else keep one version and
delete the other, or else omit it from a file system back-up.
Upon deciding to delete a version, or omit it from a file system
backup, a difference record and a pointer to the full file can
enable later reconstruction of the missing file. The difference

in block 213. If the IVCs for the tested section of the docu­
ment match, the integrity decision is likely to pass. However,
if the IVCs do not match, even after ensuring the modification
rules and algorithm were selected properly, then blocks 203
through 215 may need to be repeated for individual pages.

25 record can then be accessed to reconstruct the desired file if
needed, such as for separate editing or processing from the
referenced file. In some situations, however, some differences
may be discarded. For example, formatting changes might be
retained in a difference record, whereas certain metadata,

In the event that individual pages need to be checked for the
possibility that one has been substituted or altered, the IVCs

30 such as editing times, can be disposable. Such decisions can
be made by evaluating media parameters, such as free space,
media access time, media reliability, and the value of the
differences.

of each individual page and cumulative subsections of the 35

document may be checked in accordance with method 200. In
some tampering scenarios, the tampered document may
include a printing of the post-tampering IVC on each indi­
vidual page, although the post-tampering IVC for the entire
document will be incorrect. Thus, although the presence of 40

tampering somewhere in the document has been detected by
a document-wide IVC check, clever tampering could enable
each individual page to pass an IVC check. Thus, each page of
the five page example document may include IVCs that cor­
respond to portions of the document not on that page, such as 45

a previous or subsequent page, or include portions of the
document prior to or subsequent to that page. By comparing
the printed IVCs in the document footers for consistency,
such as the IVC on page 3 for the subsequent page does
indeed match the IVC on page 4 for the current page, tam- 50

pering of the IVCs themselves may be determined.
There are at least four states of the document: original

electronic, published, recreated electronic, and verifiable
electronic. The verifiable electronic state is the one for which
anIVC is created in both methods 100 and 200. Upon creation 55

of the original electronic version, the exact state of a later­
generated recreated electronic version typically cannot be
predicted with certainty, since the OCR or retyping process
will be subject to variations. Upon generation of the recreated
electronic version, the state of the original electronic version 60

will likely not be reproduced exactly, for reasons described
earlier. Fortunately though, there exists a verifiable electronic
version that may be generated using both the original elec­
tronic version and a later-generated recreated electronic ver­
sion. That is, the same verifiable state may be reached by 65

starting states which can be expected to have differences: the
original electronic state and the recreated electronic state. The

One challenge in identifYing similar, but not identical, files
is that comparing large files can be burdensome. As an
example, consider the case of a set of 1 Mb files, which have
passed an initial screening, based on similar file lengths.
When searching for near duplicates among a set ofN files, the
number of file comparisons typically required for a brute-
force search is the cumulative sum of 1 to (N -1). This can
easily become a large number. So if each comparison requires
operation upon two 1 Mb data sequences, the search will
consume considerable resources in terms of memory and
central processing unit (CPU) execution cycles.

However, if each of the comparisons uses only two 40 byte
sequences, the comparison will take far fewer resources.
Even fewer resources can be used if only a portion, perhaps an
8 byte portion of an IVC, is used in the initial similarity check.
With prior art IVCs, two files, which are identical, except for
a single, unimportant bit, will escape similarity detection.
Fortunately, generating IVCs based on modified data
sequences, in which less-important data is excluded from the
IVC calculations, enables detection of near duplicates with
the shorter sequences. Matches identified with the IVCs can
then be verified, if desired, with a more comprehensive com­
parison. Other similarity checks can be employed, such as a
length threshold check, in which only files within a certain
percentage length are considered candidates for similarity.
File names and dates may be used, but are often not disposi­
tive.

Method 300 performs one or more iterations of method
100. In block 301, N is incremented from an initial value of!,
which indicates that the first document was processed in
method 100. In some embodiments, blocks 303-311 are iter­
ated versions of blocks 101-109 for each of the second and
subsequent documents. In blocks 109 and 311, associating an
IVC with a document does not require that the IVC be printed

US 7,676,501 B2
17 18

be inaccurate and thus not dispositive in the retention deci­
sion. In some embodiments, a human user may be presented
with a SUllilllary of the difference record an asked to choose a
retention option. In some embodiments, a rule-based auto­
mated system may select a previously-identified solution. In
block 321, if a document has been selected for deletion, it is
replaced with a pointer to the retained document, for example
a shortcut file. When method 300 is used in media writing, the
deletion is a deletion from the writing process, and substitu­
tion with an instruction to write the shortcut to the media, in
place of the document. The difference record is stored along
with the shortcut in order to facilitate recreation of the origi­
nal file, with a desired set of differences. It should be under­
stood, however, that some embodiments delete documents
without generating pointers and difference records, and that
some embodiments delete documents and generate pointers,
but not difference records. Some embodiments may select
from the multiple options, based on the document differences
and/or user input. Method 300 is then available to return to
block 301 and iterate until all documents identified for pro­
cessing have been processed.

FIG. 4 illustrates a flow diagram for a method 400 of
improving the reliability of integrity verification, using an
IVC generated in accordance with method 100 of FIG. 1.

or published on the document. Instead, a database may be
created, with records for the processed files, identifYing the
IVCs as associated with their corresponding documents. The
database may contain file names, dates, sizes and permis­
sions, indexed with the IVC, or even multiple IVCs, gener­
ated according to method 400, shown in FIG. 400. Because
blocks 105 and 307 may use processes that exclude content
based on the document type, differences between the docu­
ments that are of lesser importance may be ignored when
generating a set ofIVCs. In block 313, these IVCs are com- 10

pared for matches. One way to do the comparison is to gen­
erate and store all IVCs first, and then go through the list,
comparing each IVC against the others. Another is to com­
pare each IVC, as it is generated, against the current list, and
then append the list with the newly generated IVe. Some 15

embodiments may skip comparing IVCs, if the file sizes are
different beyond a threshold. However, comparing file sizes
first, before comparing IVCs, may actually be slower than
comparing small portions of the IVCs for all files, and then
following up with a more comprehensive similarity check if 20

the initial partial-IVC comparison passes. That is, in some
embodiments, block 313 comprises a series of comparisons
that result in an improved comparison process, such as an
initial quick check that could eliminate most non-duplicates,
and then further, slower checks to reduce false alarms.

Comparisons using IVCs, even a full IVC from a SHA-S12
message digest, uses a significantly smaller number of bytes
than a comparison of the documents themselves. Because
document-dependent content exclusion rules limited the
document content that was used in generating the IVCs, docu- 30

ments with similar substantive content can be readily identi­
fied, even when using an integrity verification function, such

25 Method 400 is useful for extending the reliability of hash
algorithms in the presence of increasing computational power
and research intended to identifY collisions for spoofing the
message digest after tampering. Method 400 provides for

as a highly secure hash function, to generate the IVe. The
identification process thus described may result in the iden­
tification of a match between subsequent document versions, 35

in which important formatting changes were made and should
be preserved. This is possible using method 300.

In decision block 315, if a match is detected, method 300
moves to block 317, in which differences between the corre­
sponding files are determined. Otherwise, N is incremented in 40

block 301 and another file is processed. In some embodi­
ments, the difference record includes differences not only
those found within the documents, but other differences per­
taining to the documents, such as dates and sizes and a count
of the differences. In some embodiments, the difference 45

record is presented to a user or a document retention algo­
rithm, for use in determining the disposition of the docu­
ments. In block 319, one of the documents is selected for
retention.

layered integrity verification, using rule-based exclusion of
characters within a data sequence in the calculation of addi­
tional IVCs. Similar to method 300, portions of method 400
comprise an iteration of portions of method 100. Methods 100
and 400 are used with a file known to be in a baseline state and
method 500, shown in FIG. 5 and described later, is the
corresponding tandem method useful for later integrity veri­
fication.

As described previously, if a document is tampered with,
compensating changes could be inserted into portions of the
document such that a predetermined IVC is calculated after
tampering, such as the pre-tampering IVC for a specific hash
function. Embodiments of methods 100, 400 and 500 elimi-
nate the hiding places for compensating changes. A prior art
IVC may be calculated, in addition to IVCs calculated in
methods 100 and 400, in order to provide for integrity veri­
fication of the entire file. However, the rules for excluding
portions of the document when generating further IVC layers
exclude areas of the document in which compensating
changes could be hidden. Content exclusion may be based on
the document type, such as excluding metadata from word

Several retention policies may be implemented. For
example, if multiple identical documents are discovered, or
documents having disposable changes, one or two full copies
may be retained intact, while the others are selected for dele­
tion. Some directories may be excluded from the comparison,
and directories may be prioritized for file retention or file
deletion, such that files in specific directories are more likely

50 processing documents and slack space from binary execut­
able files, and/or could be based on calculated values, such as
using a prior-generated IVC to determine excluded bytes
from subsequent IVC generation. This latter system is effec­
tively equivalent to chaining in encryption, because the con-

55 tent to be protected is used as a data input for the protection
process. Multiple IVCs can be generated, using increasingly
shorter modified data sequences, to provide a layered protec­
tion scheme.

to have files retained than others. For storage media compres­
sion and/or clean-up, deletion may involve actually deleting
the document itself from the media index. For copying pur­
poses, such as export and back-up, deleting may be limited to 60

logically deleting the copy instruction from the writing pro­
cess, but leaving the original file in place on the media. It
should be understood, therefore, that method 300 may be
invoked automatically as part of a media writing process.

In some embodiments, the retention policy may select 65

keeping a newer file and deleting an older version, although
time and date indications on many computer file systems may

For example, for a document which is an executable com­
puter program, an IVC may be generated for the entire file. If
the program had been tampered with, the easiest place to hide
compensating changes is within slack space, which is unused
space within an executable computer program file that had
been inserted by the compiler, and is not reached during
program execution. Another place to hide compensating
changes is in data sections which are unlikely to be used.
Thus, a second IVC could be generated for the program,

US 7,676,501 B2
19

which excludes slack space from the IVC check, thereby
denying the slack space as an available hiding place for the
compensating changes. A third IVC could also be generated,
excluding data sections and/or rarely-used instructions. If all
three IVCs are associated with the program, then slack space
and data sections, even those intermixed with legitimate CPU
instructions, are unavailable as hiding places for compensat­
ing changes. The modified data sequence generation process
for executable programs may require some type of control
flow analysis, similar to control flow graph generation pro- 10

cesses used in disassembling debuggers, which discriminate
between instructions and data, and identify execution path
possibilities by analyzing control flow jump instructions. In
some embodiments, even bytes that fall within the set of
legitimate CPU instructions are excluded if a control flow 15

analysis indicates that the instructions are unreachable
through likely execution paths.

The concept is that the modified data sequence, for which
the IVC is generated, has multiple properties which compli­
cate any attempts to calculate and insert compensating 20

changes to conceal tampering in the original document. This
is true even if the party performing the tampering is aware of
all the modification rules. First, if the modification rules are
set to exclude characters based on their value, the compen­
sating changes must fit within a restricted character set. This 25

can potentially increase the required length of the compen­
sating set. Whereas before, the compensating set might have
been able to use any byte values, the compensating changes
must now also pass through the content exclusion and modi­
fication rules. Position-based modification rules could 30

20
nessed, whereas before, compensating changes could have
been hidden in areas of a word processing digital file never
seen by a human. In documents that form binary executable
files, the relatively fragile behavior of a CPU, when presented
with a set of instructions and data, can be harnessed to cause
a suspicion-raising crash when compensating changes are
executed, whereas before the compensating changes could be
hidden in areas of the file not operated upon by the cpu. For
audio and video files, the additional method is human inter­
pretation of the sound and/or images. For example, even if a
set of compensating changes could be found for an audio or
video file, that could return the SHA-l hash value to a pre­
altered value after changing data, it would be highly unlikely
that the compensating changes would result in sounds or
images that do not arouse suspicion or attract the attention of
a human observer. However, if a potential saboteur had the
option of hiding the compensating changes in unused space in
the file, the tampering task is greatly simplified.

Method 400 performs one or more iterations of method
100. In block 401, N is incremented, which indicates that a
prior layer was processed in method 100. In some embodi­
ments, blocks 403-411 are iterated versions of blocks 101-
109 for each of the further IVC layers. In block 403, the Nth
data sequence is generated from the original document. In
some embodiments, if each of the modified data sequences is
to be generated using the same baseline data sequence, block
403 is only performed a single time, and is not necessarily
updated for every iteration of method 400. In some embodi­
ments, the modified data sequences become increasingly
exclusive with higher iterations, so the data sequence result­
ing from block 403 or an equivalent is the previous round's
modified data sequence resulting from block 405. That is, in
some embodiments, the Nth data sequence is the (N-l)th
modified data sequence. In block 407, the Nth IVC is gener-

exclude or otherwise modify every Nth element, where N can
change after each affected element. For modification rules
based on element position, compensating changes, if they can
even be found, must be positioned appropriately in the file in
order to remain in all of necessary layers.

Document type-based modification which, for some
embodiments, retains printable or printably determinable
characters for word processing documents and computer
execution instructions and data for binary executable files,
forces compensating changes into portions of the document

35 ated. It should be understood that multiple IVCs can be gen­
erated for each iteration of methods 100 and 400, using dif­
ferent integrity verification functions, and further, that
different functions can be used for different iterations. For
example, method 100 can use the SHA-512, the first iteration

40 of method 400 can use the SHA-256, and the second iteration
of method 400 can use the SHA-l. in which any compensating changes are detectable by other

means. For word processing documents, even if compensat­
ing changes could be found that used only printable charac­
ters, it is highly unlikely that the changes would take the form
oflanguage that fit the remainder of the document. For binary 45

executables, even if compensating changes could be found
that used only valid CPU instructions, it is highly likely that
the changes would cause anomalous program behavior that
would trigger suspicion.

Using methods 100, 400 and 500 in tandem, surplus file 50

capacity, i.e., the areas of a file in which changes could reside,
are placed outside a zone of trust for a particular IVC layer.
That is, the documents are separated into different subsets: a
portion for integrity verification and a buffer portion for
which changes are tolerable, at least for the current IVC 55

calculation layer. A portion excluded for one IVC layer,
though, may have been included in a prior IVC layer, because
methods 400 and 500 can be iterated. IN some embodiments,
the excluded portion for a specific IVC layer is effectively a
sacrificial portion, intermingled with the included portion, 60

such that the portion of the document used in the IVC gen­
eration is not fully contiguous.

Other methods are then brought into the tamper detection
process, which had not been available with prior art integrity
verification methods. For example, in documents intended for 65

human understanding, the ability of a human reader to rapidly
spot meaningless sequences of printed characters is har-

In block 409, the IVC, or multiple IVCs, generated in the
Nth round are associated with the Nth modified data
sequence. In some embodiments, a reference database is cre­
ated of the IVCs, and either a label or the position of an IVC
in the database indicates which of the N iterations produced
the IVe. In some embodiments, block 409 is omitted. In some
embodiments, a database listing the IVCs can be scrambled,
since during a verification process, a newly generated verifi­
cation IVC can be compared against all the IVCs in the
reference database. In block 411, the IVCs are associated
with the original document, possibly by the creation of refer­
ence database, or else by adding the IVCs to the document. It
should be understood, however, that in some embodiments,
blocks 109 and 411 of methods 100 and 400, respectively, are
optional. It should be further understood that, in some
embodiments, blocks 409 and 411 are merged.

In blocks 109 and 411, associating an IVC with a document
does not require that the IVC be printed or published on the
document. Instead, creating the reference database suffices,
because it stores information that is used to communicate the
IVCs to another party via alternative means. This addresses a
security concern often arising in the use of hash function. If
the document is emailed or mailed on a computer readable
media with the IVCs included, a third party may intercept the
document and the IVCs, tamper with the document, generate
new IVCs, and then forward the altered document and new

US 7,676,501 B2
21

IVCs to the intended recipient. If the recipient uses the new
IVCs, they will falsely enable the document to pass integrity
verification. Rather, the recipient should insist on receiving
the IVCs by an alternative communication chaunel, such that
the third party cannot reliably intercept and replace them.
Examples of alternative communication channels include a
phone call, a separate mailing route, and even open publica­
tion in a database, on a website, or in another public forum.
Open publication does not betray the contents of the original
file if an IVC is generated using a one-way function, such as
the SHA-I or a SHA-2 algorithm.

The tandem combination of methods 100 and 400, and
even method 100 alone, may be used with or without a prior
art hash of an entire document. That is, a prior art hash value
may be generated for a document, along with an IVC gener­
ated in accordance with method 100. Such a system provides

22
modification rules changed between different layers during
methods 100 and 400, block 511 should track this as N
changes. However, in some embodiments, methods 100 and
400 operate on word processing documents, which have for­
matting commands and may further contain hyperlinks and
graphics, which are excluded from the IVC calculation. In
contrast, some embodiments of method 500 operate on OCR
process stream outputs, and can thus use a simpler set of
modification rules to produce the equivalent output. The key

10 concept here is that the modification rules in methods 100,
400 and 500 are tailored for the document types and formats
they can be expected to operate upon, but are capable of
producing the same output modified data sequence, if the
documents have the same substantive content. In block 513,

15 the corresponding integrity verification function should be
used as was used in the corresponding layer calculation of
block 105 or 405 to generate the verification IVe. It should
also be understood that block 507 may occur after any of
blocks 509-513.

a two layer integrity verification solution. Alternatively,
Methods 100 could be performed alone, to provide a single
layer IVC solution, but one that still denies hiding places for
compensating changes. As yet another alternative, methods 20

100 and 400 could be performed in tandem, a prior art hash
function. This would provide, at a minimum, a three layer
solution, although more layers can be generated with a second
and further iteration of method 400. Further alternatives

The verification data sequence might be different than the
original data sequence, based on whether the document was
scanned in from a hard copy, such as a paper document. The
primary distinguishing factor between the original data
sequence and the verification data sequence is that the origi­
nal data sequence is the baseline version. In some embodi­
ments, there is no requirement that the original data sequence

could be the tandem use of methods 100 and 400 without a 25

prior art hash function. Any of these options are usable with
method 500 and the system 1700, illustrated in FIG. 17.

FIG. 5 illustrates method 500 of ascertaining tampering in
tandem with methods 100 and 400. It should be understood,
however, that method 400 is optional, and method 500 can be
used with method 100 alone. In block 501, a copy of a docu­
ment is received. The document may be received in printed or
electronic file form. If the document is received in printed or
etched form, it will need to be converted to an electronic form
for processing. If the document is received in a published file
format, or an image format, an OCR or equivalent process
will enable extraction of the text for processing. In block 503,

be generated in method 100 prior in time to the generation of
the verification data sequence in method 500. For example, a
document could be generated and sent to a recipient by a first,

30 unsecure path. The recipient may suspect tampering, and
begin operating method 500. Upon reaching the point that the
original IVC is required, block 507, the document recipient
may contact someone having a copy of the baseline, trusted
document. Method 100, and possibly method 400, may then

35 be initiated in order to generate the original IVe. Thus, the
original IVC is the IVC generated from the trusted electronic
document, even if calculated at a later time, and the verifica­
tion IVC is the IVC generated from a document copy that is N is incremented, in the first iteration, to a value of I. In

should be understood, however, that if only a single IVC layer
was generated using a modified data sequence, block 503 is 40

not performed. It should be further understood that the des­
ignation of N in any figure described herein is only for pur­
poses of describing a particular iteration of a process, and
should not be interpreted to require that any memory location

being tested for integrity.
In block 515, the Nth verification IVC is compared with the

corresponding original IVC and blocks 503 through 515 are
iterated until a sufficient number of IVC pairs are tested. In
some embodiments, fewer than all the original IVCs may be
verified. If a discrepancy is found in decision block 517, a

in any processing device necessarily holds an integer value
equal to that described as N during the process iteration.

In block 505, the section of the document copy is identified
that corresponds to the Nth original data sequence used for
generating an IVe. The section may be a page of a printed
document, the entire document, or any identifiable subset of
the document. In block 507, the Nth original IVC, generated
using one of methods 100 or 400, is identified. In some
embodiments, this can be accomplished by reading a portion
of a face of the document. In some embodiments, this is
accomplished by reading in a separate document. In some
embodiments, such as those involving alternate communica­
tion channels for the IVCs, the IVCs may be typed in or
electronically pasted into a user input window in a computer
program application executing at least a portion of method
500. In block 509, a verification data sequence is generated,
which corresponds to the original data sequence generated in
block 103 of method 100, shown in FIG. 1 or block 403 of
method 400. In some embodiments, blocks 511 and 513 are
similar to blocks 103-105 and 405-407 of methods 100 and
400, respectively.

In some embodiments, block 511 uses a similar modifica­
tion rule set as is used in one of blocks 103 and 403, and if the

45 difference report is generated in block 519. The difference
report may be as simple as a warning to a user, an annotation
in a log file, an update to a database, or may be a trigger for a
quarantine action. Since method 500 may be used on binary
executables, computer data files, or executable source code,

50 such as a java script document, it may be incorporated into a
malicious logic detection system that would isolate poten­
tially dangerous files.

FIG. 6 illustrates a method 600 for generating a modified
data sequence, compatible with method 100. For example,

55 method 600 may comprise an embodiment of block 105.
Further, method 600 may comprise embodiments of blocks
307 and/or 405. In block 601, a data sequence is received,
such as the sequence generated in block 103 of method 100.
The sequence has a first element and a final, or last, element.

60 These are identified in blocks 603 and 605 respectively. In
block 607, at least one element in the input sequence is
identified for modification, according to the modification
rules, and the modification is performed in block 609. The
modification may be omission of an unprinted element, such

65 as deletion of a tab or a space, or may be the substitution of a
tab character with a space character. In some embodiments,
characters outside the English language alphabet character

US 7,676,501 B2
23

set are replaced with the nearest character in the English
language alphabet character set. For example, an 0 with an
umlaut may be replaced with either an "oe" or else an "0"

alone. In decision block 611, if operation on the sequence is
finished, the modified sequence is sent to the IVC generator,
for processing as in block 107 of method 100.

It should be understood that method 600 illustrates a rep­
resentative embodiment, and equivalent alternatives may be
used, such as operating on an open data sequence in which the
final element is not identified prior to beginning the data 10

sequence modifications. Alternatives for various embodi­
ments include modifying the memory location containing the
input sequence; creating the output sequence in a different
memory location; and generating a modification index, which
indicates the modifications, thereby enabling production of 15

the modified sequence by the IVC generating function,
although the modified sequence itself may not actually exist

24
method 800 may comprise an embodiment of block 109 or
block 411 of method 400. Method 800 can beused in embodi­
ments which calculate multiple IVCs per documents and then
append the document with the IVCs. For example, method
800 can be used for calculating one IVC per page of a multi­
page document, one IVC per paragraph of a single page
document, for calculating a set of IVCs using different hash
algorithms, or for calculating a set of IVCs, each generated
using one of a set of increasingly restrictive exclusion rules.
In block 801, a document is received, and in block 803, N data
sequences are identified. The IVCs are generated in block 805
and appended to the document in block 807. In some embodi­
ments' the IVCs are written into a document footer of a word
processing document. Some embodiments include a word
processing application module, which produces the IVCs and
inserts them into the document, similarly to the way page
numbers and editing dates are automatically inserted and
updated.

FIG. 9 illustrates a method 900 for associating an IVC with
a document, compatible with method 100. For example,
method 900 may comprise an embodiment of block 109 or
block 411 of method 400. Using method 900, IVCs for dif­
ferent sections of a multi-page document are placed on the
same page. A representative result of an embodiment of

in memory. Other alternatives include that block 607 and 609
are not performed individually on a character-by-character
bases, but rather an index is created for all modifications, 20

which are performed as a batch in a single pass through block
609. Further alternatives include that method 600 does not
operate on an entire sequence, but is used or generating por­
tions of a sequence on an "as needed" basis for the IVC
generator, such as when blocks 105 and 107 of method 100
are performed overlapping in time. It should be understood
that multiple options exist for improving process and algo­
rithm speeds, and the presentation of particular embodiments

25 method 900 is illustrated in FIG. 13, which described later in
further detail. The use of some embodiments of method 900

in any of the figures is not intended to exclude possible
variations, including those assisting with improving run time, 30

memory usage, fault tolerance, and/or security.
FIG. 7 illustrates a method 700 for identifYing a modifiable

document element, compatible with method 600. For
example, method 700 may comprise an embodiment of block
607. In block 701, a byte in the document is checked for 35

whether it is within a set of printably determinable ASCII
characters. In some embodiments, the set of printably deter­
minable ASCII characters used in block 701 is fairly narrow,
including only a portion of the printable characters in the
English language alphabet. In some embodiments, easily 40

confusable or rarely used characters are excluded, even if
printable. If the tested character is outside the test ASCII
range, as determined in block 703, it is identified as modifi­
able, either to be deleted or substituted with another character,
in block 703. If the tested character is within the test ASCII 45

renders a document not only tamper evident, but further
enables a detection of tampering to be isolated to a specific
page of a multi-page document.

In block 901, the document is received, for example a word
processing document is created or opened for editing. In
block 903, multiple sections of the document are identified,
and N is incremented block 905. The multiple sections may
overlap each other. As one example, a five page document
may be divided into sections defined as: an aggregate of all the
pages, each page, the combination of the first two pages, the
combination of the second through fifth page, the combina­
tion of the first three pages, the combination of the third
through fifth page, the combination of the first four pages, and
the combination of the final two pages. This scheme provides
N= 12 different sections, although it should be understood that
other divisional schemes are possible. In block 907, IVCs are
generated for each of the sections, which are appended to a
section. As a further clarification of the five-page document
example, N=1 indicates the entire document, N=2 indicates
page one, N=3 indicates page two, and N=4 indicates page
three. It should be understood that other indexing schemes are
possible. For N=2, page one of the document would then be
appended with the IVC for the entire document (N=I), the

range, as determined in block 703, it still might not be print­
able, based on the document type. For example, the character
may be part of a formatting command, such as the </p>
paragraph formatting identifier in an html document, or a
formatting command in a proprietary word processing docu­
ment. In such situations, the character may need to be
excluded, in order to enable reliable recreation of the modi­
fied data sequence. Thus, in box 707, a second identification
process is used, based on whether the tested character is likely
to be printed. As a note for html documents on web sites, there
are different ways for a website visitor to experience the
document, including viewing the html code that produces the
web page, viewing the generated page, and having a speech
synthesizer read the contents, such as with an internet
browser configured to assist visually impaired persons. For
websites, the data sequence used to generate the text stream
for a speech synthesizer may, in some situations, be the pre­
ferred data sequence to be used as an input to methods 600
and 700. For some documents, such as pure textual streams,
block 707 is optional.

50 IVC for page one (N=2), and the IVC for page two (N=3).

FIG. 8 illustrates a method 800 for associating an IVC with
a document, compatible with method 100. For example,

Similarly, for N=3, page two of the document would be
appended with the IVC for page one (N=2), the IVC for page
two (N=3), and the IVC for page three (N=4). Some IVCs,
such as the IVC for the entire document, may be appended to

55 each page, or just the first and final page. In some embodi­
ments, for some sections, blocks 907 and 909 are omitted.

In decision block 911, a decision is made as to whether all
identified sections of the document have been processed and
appended. If not, method 900 returns to block 903 to incre-

60 ment N, although some embodiments may return to other
points in method 900. Otherwise, the document is published
with the IVCs on a face of the document, such as in a footer,
header, or appendix. In some embodiments, if duplex printing
is available, the IVCs may be appended to the back of a page,

65 or inserted into an electronic version of the document as to be
printed on the back side of a page. In some embodiments,
publishing a document comprises printing on paper. In other

US 7,676,501 B2
25

embodiments, publishing a document comprises generating a
printer stream suitable to command a printer to print at least a
portion of the document. In other embodiments, publishing a
document comprises generating a publishing format file, such
as a PDF, with or without text information, or an image-based
file.

FIG. 10 illustrates a method for using IVCs to identify
document tampering, compatible with method 900. Whereas
method 900 renders a document tamper evident, method 1000
enables detection of tampering occurring after method 900, or
even method 100, has been performed. That is, embodiments
of methods 900 and 1000 can be used in tandem to prepare a
document for transmission through an untrusted channel, and
then verify that the document remained intact upon receipt. In
the following description of method 1000, the five page docu­
ment example from the description of method 900 will be
used, although it should be understood that method 1000 has
a wider range of applicability.

In block 1001, a copy of the document published in block
913 is received. Examples include that a PDF document may
be read from a computer readable medium, a facsimile or
email bitstream may arrive, and a paper document is obtained.
In block 1003, an electronic copy is generated that has text
information, such as by performing an OCR process, or any
other suitable process that generates a textual sequence from
an image or image-based digital file. In block 1005, N is
incremented and sections of the electronic copy, which cor­
respond to some of the sections identified in block 903, are
identified in block 1007. Some embodiments of methods 900

26
a mixture of devices and processes, and shows how a consis­
tent data stream can be regenerated from a printed document,
even if the OCR processing produces a text stream containing
a different number of spaces between printed letters than was
in the original document.

Block 1101 represents electronic generation of an original
document, such as by typing, speech recognition, or any other
manner of generating a textual document. Two different elec­
tronic versions of the document are produced, document 11 02

10 and document 1103, which can be stored on a computer
readable medium as digital files. Document 1103 is sent to
printer 1104 to produce a published copy 1105 on paper,
which represents the untrusted copy. Published copy 11 05 is
scanned and subjected to an OCR process 1106 to produce a

15 text stream 1107. If published copy 1105 contained any
graphics or was printed on paper that contained a logo and/or
other data in a letterhead section, OCR process 11 06 can omit
such information from output text stream 1107.

The first document version 1102 contains "AB", two
20 spaces, "CD", a tab, and "EF$YZ". The formatting was

changed to "AB", a tab, "CD", a space and a tab, and
"EF$YZ" in document version 1103, which was the one
printed. Due to scanning misalignment, or other OCR process
imperfections, the reproduced text stream 1107 contains

25 "AB", a space, "CD", two spaces, and "EF$YZ". Thus, OCR
process 11 06 improperly interprets one of the tabs as a single
space. With this erroneous reproduction, a prior art hash
function would mistakenly identifY published copy 1105 as
having been tampered.

However, original document modification process 1108
and verification modification process 1109 are able to alter
the IVC generation process to mask predictable differences
resulting from OCR process 1106. In the embodiment illus­
trated, modification processes 1108 and 1109 delete horizon-

and 1000 use a consistent rule set to identify document sec- 30

tions, such using as page breaks and, for each page, identifY­
ing prior cumulative and following cumulative sections.
Thus, for some embodiments of method 1000, the document
sections identified in block 903 may be independently iden­
tified in block 1007, even if the section selection information
was neither appended to the document or accompanied the
document in some other way.

35 tal displacement elements, such as spaces and tabs, passing
only printable characters "ABCDEF$YZ" to create modified
data sequence 1110 and modified verification data sequence
1111, respectively. Thus, modification process 1108 excludes
two spaces and a tab between the first and last elements, A and

40 Z, of document 11 02 but a space and two tabs from document
1102. This illustrates a partial example of method 300, shown
in FIG. 3. If method 300 were to be implemented using
documents 1102 and 1103, a difference record generated in
block 317 ofan embodiment method 300 would indicate the

In block 1009, the original IVCs, which were appended to
the document in block 909, are identified in the current docu­
ment copy. Examples include identifying a document footer
using its position on the paper, and then extracting characters
appearing in the footer after the OCR process. Any OCR
process that may have occurred in block 1003 could have
converted the original IVCs from images to text, which are
then converted to numeric values in block 1009. Alterna- 45

tively, an OCR process in block 1003 may be masked to omit
document footers, thereby avoiding processing the original
IVCs when generating the text stream. In such a situation, the
document footer may need to be processed with a separate
OCR process to extract the original IVCs. In some embodi- 50

ments, the original IVCs are read from a document header,
appendix, or an associated file.

In block 1011, the verification IVCs are generated, and are
compared with the original IVCs in block 1013. It should be
noted that the IVCs appearing on any page of a document 55

would not include their own values in the calculation, nnless

space and tab differences. Returning to FIG. 11, modification
processes 1109 also excludes horizontal displacement ele­
ments and passes only printable characters "ABCDEF$YZ".
Therefore, the predictable differences due to recreating an
electronic document version from a printed version can be
omitted from the integrity verification calculations and are
thus eliminated as a source of false alarms of tampering.

The ASCII representations 1112 and 1113 of modified data
sequence 111 0 and modified verification data sequence 1111,
respectively, are identical: {Ox41 Ox42 Ox43 Ox44 Ox45 Ox46
Ox24 Ox59 Ox5A} in hex. The original IVC generation pro­
cess 1114 and verification IVC generation process 1115 each
use the SHA-l to produce an identical IVC 1116. IVC 1116
represents either an original IVC or a verification IVC, based
on its association with either trusted document version 1103

a predictive-recursive hash algorithm could be found that
produced a hash value of a document that already contained
the calculated hash value within the document. In decision
block 1015, if a match is detected and remaining sections
require verification, method 1000 returns to block 1005 to
increment N. Otherwise, a tamper report is generated in block
1017. In some embodiments, block 1017 comprises provid­
ing a warning to a user. In some embodiments, block 1017
comprises creating or annotating a log file.

60 or the untrusted document version 11 05. Thus, FIG. 11 dem-
0nstrates how two different electronic versions of an elec­
tronic document can produce the same IVC, which is reliably
identical to an IVC produced after printing a copy to paper,

FIG. 11 illustrates a functional block diagram of a docu­
ment verification system 1100. System 1100, as illustrated, is

65

scanning it, and then OCR processing it.
FIG. 12 illustrates a fnnctional block diagram 1200 of a

document verification system 1200. System 1200, as illus­
trated, is a mixture of devices and processes, and is numbered

US 7,676,501 B2
27

10

28
"First of five pages." Ox8E2B8A8B
Ox986A78EE OxC190C923 OxBA7CDCOE,

"Second of five pages." Ox6FB49040
Ox2FA4E7E OxCCB9DABF OxB066C3EC,

"Third of five pages." Ox77CCE801
Ox20D99BEE OxC44B7861 OxCC464ClO,

Ox2B9CA021

Ox999A39C4

Ox563BB863

"Fourth of five pages." OxCBFID61B OxE3EEIBB8
Ox57694F92 OxDE5A739F OxF4FFB56,

"Fifth of five pages." OxC5842BEB
OxF2AF23C3 Ox9CDB9962 OxB998F7Bl;

the combination of the first two pages:

OxAOOICIFB

similarly to system 1100 in FIG. 11. With system 1200, a
method of operating in the presence of multiple font and
formatting commands is shown. Specifically, FIG. 12 illus­
trates one way of handling underlining, italics, bold fonts, and
vertical displacement elements, such as line feeds. Document 5

versions 1202, 1203 and 1207 are formatted differently. In
addition to spacing differences among the documents, docu­
ment version 1202 has a line feed between "for" and "dem­
onstrating", whereas document version 1203 has a line feed
between "demonstrating" and integrity" and document ver­
sion 1207 has a line feed between "integrity" and "verifica­
tion". While OCR processes are unlikely to produce such
errors relating to carriage returns, introducing such errors into
the example demonstrates a method for making the IVC
reproduction process fairly robust.

15 "First of five pages. Second of five pages." OxFD73C82C
Ox37A47022 Ox3382FBF OxA85D49E3 Ox70455759;

the combination of the second through fifth page:
In the illustrated example, font commands such as bold,

underlining and italics are omitted from the IVC calculations.
Any OCR process used in conjunction with such an embodi­
ment must be compatible with the separation of underlining
from the text. In the illustrated example, line feeds and car­
riage returns are not passed through to the modified data
sequence unaltered, although since these can often be reliably
recreated for many documents, some embodiments may
retain them intact. Instead, line feeds and carriage returns, if
separate characters, are substituted with a single space. As
illustrated, all displacement elements, whether horizontal,
vertical or both, single or multiple, are substituted with a
single space, ASCII 32 in decimal and Ox20 in hex. Modifi­
cation processes 1208 and 1209 produce identical sequences
1210 and 1211, respectively, which are represented in ASCII
hex as sequences 1212 and 1213. Sequences 1212 and 1213

"Second of five pages. Third of five pages. Fourth of five
20 pages. Fifth of five pages."

OxlC8EAOBO Ox8357703A Ox8E85A3AC Ox26440913
OxB6681C2;

the combination of the first three pages:

25 "First of five pages. Second of five pages. Third of five pages."
Ox75EF30B Ox7F624040 Ox283225F5 OxlC47843
OxE344855;

the combination of the third through fifth page:

30 "Third offive pages. Fourth of five pages. Fifth of five pages."
OxC8B309C2 Ox915CA283 Ox414EE5EO Ox8BDOA8El
OxClOC415E;

the combination of the first four pages: are operated upon by IVC generation processes 1214 and
1215 to produce an identical IVC 1216. If IVC generation
process 1215 did not produce IVC 1216, then document
version 1207 would be identifiable as having been tampered.

35 "First of five pages. Second of five pages. Third of five pages.
Fourth of five pages."

Ox68B67B5E OxC8B46BDl Ox6F035035 Ox2462974B
OxAFED72B7;

If modification process 1208 were configured to operate on
word processing documents, which could include hyperlinks
and graphics, modification process 1208 would require a
document parsing process to identifY unprinted characters
that happened to be within the printable ASCII range, as well

40 and the combination of the final two pages:

as other bytes that might coincidentally match the ASCII
codes for spaces, tabs, line feeds and carriage returns. How­
ever, if process 1209 were configured to only operate on 45

purely textual data bitstream coming from an OCR process
that omitted font information, process 1209 could be consid­
erably simpler than process 1208, but yet produce the same
output.

FIG. 13 illustrates an intact page 1300 from a tamper 50

evident printed document. The example document used for
FIGS. 13-15 is a five page document containing, in its
entirety, the text string "First of five pages. Second of five
pages. Third of five pages. Fourth of five pages. Fifth of five
pages." with one sentence on each page. The third page, 55

illustrated in FIG. 13 as page 1300 contains the text string
1301 "Third of five pages."Two tampered versions of the
fourth page of this example document are illustrated in FIGS.
14 and 15. Dividing the document into the 12 sections of the
example, usedin the description of FIG. 9, gives the following 60

text and corresponding IVC in hex: an aggregate of all the
pages:

"First of five pages. Second of five pages. Third of five pages.
Fourth of five pages. Fifth of five pages." OxD183DFIC
Ox60A2A94A Ox67167C2B OxlB1571F8 Ox8041EOE2; 65

each page:

"Fourth of five pages. Fifth of five pages." Ox3FDAEIC9
Ox2C50 DB5F Ox65FOCD7D OxE5E837FF Ox39A20FC9.

The example IVCs are calculated with the SHA-l, using
printable characters and allowing a single space between
separated words, but omitting page breaks, formatting and
font commands, page numbers, and any other text appearing
in a document footer or header. In FIG. 13, text string 1301,
reciting "Third of five pages." appears in a content section
1302 of page 1300. Page 1300 also comprises a document
footer box 1303, although it should be understood that a
document footer may be identifiable by its position on a page,
and does not require enclosure by a line. Document footer box
1303 contains a page number 1304, reciting "Page 3 of5" and
six IVCs 1305-1310. In the illustrated embodiment, the
printed portions of the IVCs are the final 8 bytes of the
calculated IVC values, although a different portion of any
IVC may be used, including different portions for each of the
differing pages. IVC 1305 represents the entire document.
IVC 1306 represents the current page (third page). IVC 1307
represents the immediately prior page (second page). IVC
1308 represents the cumulation of all pages from the first page
through the end of the current page (first through third pages).
IVC 1309 represents the immediately following page (fourth
page). IVC 1310 represents the cumulation of all pages, from
the current page through the final page (third through fifth
pages). Other IVCs may be used in other embodiments, such

US 7,676,501 B2
29

as including the IVC for pages N prior or following, in which
N exceeds 1. In some embodiments of a verification process,
the IVCs and possibly other contents of document footer box
1303 must be distinguished and separated from the contents
of content section 1302, to avoid corrupting the verification 5

IVC calculations.

Using the example scheme, the IVC sets used for each of
the five pages will be:

30
Ox68B67B5E OxC8B46BDl Ox6F035035 Ox2462974B
OxAFED72B7,

OxC5842BEB OxAOOlCIFB OxF2AF23C3 Ox9CDB9962
OxB998F7Bl,

Ox3FDAEIC9 Ox2C50 DB5F Ox65FOCD7D OxE5E837FF
Ox39A20FC9;

and for Page 5:

Page 1:

OxDl83DFIC Ox60A2A94A Ox67167C2B OxlB1571F8
Ox8041EOE2,

10 OxDl83DFIC Ox60A2A94A Ox67167C2B OxlB1571F8
Ox8041 EOE2,

Ox8E2B8A8B Ox2B9CA021 Ox986A78EE OXC190C923
OxBA7CDCOE,

OxOOOOOOOO
OxOOOOOOOO,

OxOOOOOOO OxOOOOOOOO OxOOOOOOOO

Ox8E2B8A8B Ox2B9CA021 Ox986A78EE OXC190C923
OxBA7CDCOE,

Ox6FB49040 Ox999A39C4 Ox02FA4E7E OxCCB9DABF
OxB066C3EC,

OxDl83DFIC Ox60A2A94A Ox67167C2B OxlB1571F8
Ox8041EOE2;

Page 2:

OxDl83DFIC Ox60A2A94A Ox67167C2B OxlB1571F8
Ox8041EOE2,

OxC5842BEB OxAOOlCIFB OxF2AF23C3 Ox9CDB9962
OxB998F7Bl,

15 OxCBFID61B OxE3EEIBB8 Ox57694F92 OxDE5A739F
OxOF4FFB56,

OxDl83DFIC Ox60A2A94A Ox67167C2B OxlB1571F8
Ox8041 EOE2,

20 OxOOOOOOOO OxOOOOOOOOOO OxOOOOOOOO OxOOOOOOOO
OxOOOOOOOOO,

25

OxC5842BEB OxAOOlCIFB OxF2AF23C3 Ox9CDB9962
OxB998F7Bl.

Zeros are used when no IVC is available according to the
scheme, such as for the prior page IVC on the first page
(which likely has no prior page), and the following page IVC
on the final page (which likely has no following page).
Another optional scheme, which saves footer space by one

Ox6FB49040 Ox999A39C4 Ox02FA4E7E OxCCB9DABF 30

OxB066C3EC,

IVC for three page minimum documents uses: current page;
prior page, or entire document if first page; cumulative prior
pages; following page, or entire document if final page; and
cumulative following pages. To save space on the document
faces, only portions of the calculated IVCs are appended to

Ox8E2B8A8B Ox2B9CA021 Ox986A78EE OXC190C923
OxBA7CDCOE,

OxFD73C82C Ox37 A47022 Ox03382FBF OxA85D49E3 35

Ox70455759,

Ox77CCE801 Ox563BB863 Ox20D99BEE OxC44B7861
OxCC464ClO,

Ox 1 C8EAOBO Ox8357703A Ox8E85A3AC Ox26440913
OxOB6681C2;

Page 3:

OxDl83DFIC Ox60A2A94A Ox67167C2B OxlB1571F8
Ox8041EOE2,

Ox77CCE801 Ox563BB863 Ox20D99BEE OxC44B7861
OxCC464ClO,

Ox6FB49040 Ox999A39C4 Ox02FA4E7E OxCCB9DABF
OxB066C3EC,

Ox075EF30B Ox7F624040 Ox283225F5 OX01C47843
OxOE344855,

OxCBFID61B OxE3EEIBB8 Ox57694F92 OxDE5A739F
OxOF4FFB56,

OxC8B309C2 Ox915CA283 Ox414EE5EO Ox8BDOA8El
OxClOC415E;

Page 4:

OxDl83DFIC Ox60A2A94A Ox67167C2B OxlB1571F8
Ox8041EOE2,

OxCBFID61B OxE3EEIBB8 Ox57694F92 OxDE5A739F
OxOF4FFB56,

Ox77CCE801 Ox563BB863 Ox20D99BEE OxC44B7861
OxCC464ClO,

40

45

50

55

60

65

the document, as shown in FIGS. 13-15.

A word processor, document publishing software, web
browser, facsimile machine, or printer can be used to produce
page 1300 in accordance with one or more embodiments of
methods 100, 400, 600, 700, 800, and/or 900. An exemplary
word processor will have the functionality to format the docu­
ment into pages; use page breaks to identify sections; gener­
ate the 12 original data sequences using the page breaks and
omitting possible incompatible graphics, footer and header
data; and either introduce the IVCs into footer box 1303
during editing, similarly to updating page numbers, or when
the document is rendered into print commands sent as a
bitstream to a printer. An exemplary printer will have the
functionality to parse an incoming bitstream; determine the
12 sections; possibly perform an optional OCR process, if the
bitstream is in image format; and print the IVCs on the paper,
either the front or the back. An exemplary facsimile machine
will have the functionality to parse a bitstream, either an
incoming fax message or the scarmed image that is to be sent;
determine the 12 sections; perform an OCR process; and print
the IVCs on the paper, either the front or the back, similar to
the way in which FAX transmittal data is appended to docu­
ments. An exemplary document publishing software applica­
tion will have functionality similar to the exemplary word
processor, except the output will be a digital file stored on a
computer readable medium, such as a PDF file, rather than a
bitstream sent to a printer.

For embodiments in which only a portion of the IVC is put
onto the document, the same portion need not be used on
every page. For example, FIG. 13 illustrates the use of the
final 8 bytes of the IVC of the entire document on each page.
However, for some embodiments, the bytes of the IVC used
on one page may be different than used on a subsequent page.

US 7,676,501 B2
31

Since the IVC verification process will generate the entire
IVC, finding any portion of that IVC on a page provides
evidence that the IVC is valid. Using the same portion on each
page facilitates a rapid check for consistency, however, if only
a portion of the IVC is used in order to preserve footer space, 5

the entire IVC might not appear when using such a scheme
with a short document. Instead, a slightly different scheme
could be employed in which each page has a subsequent set of
8 bytes, such that over 5 pages, the entire IVC of the entire
document is printed, and if a 6th page were present, the IVC 10

byte portions would begin repeating. Yet another modifica­
tion would be that portions of the IVC would overlap on
subsequent pages, such that bytes 1-7 appear on page 1, bytes
6-12 appear on page 2, and so on. This both preserves space
and provides continuity of the IVC portions among the pages. 15

However, in some embodiments, the portion of the IVC writ­
ten to the page can be encrypted with a key that is accessible
for later verification or other wise changed in a marmer that
the published IVC portion can be recovered later.

FIG. 14 illustrates a tampered page 1400, which is a tam- 20

pered version of the fourth page from the example five page
document. Page 1400 comprises a text string 1401 in a con­
tent section 1402 and a document footer box 1403. Document
footer box 1403 contains a page number 1404, reciting "Page
4 of 5" and six IVCs 1405-1410. In the illustrated embodi- 25

32
Ox4BIBIEB5 Ox6AE6ECAl. The value ofIVCs 1305 and
1405, Ox8041EOE2, does not match any portion of the veri­
fication IVC, and thus tampering of the entire document is
detectable. If a document has not been tampered, the check of
the entire document with a single verification IVC may be
quicker than a series of individual page checks. However,
once tampering has been detected, it may be further desirable
to locate the affected section. For a short document, a next
step of checking individual pages may be fastest. However,
for long documents, the cumulative IVCs enable a more rapid
diagnosis, such as successively dividing the document into
halves, and further checking only the tampered half.

For example, since the third page, page 1300, is the middle
page, the cumulative prior and cumulative following sections
can be checked independently, in order to determine whether
tampering is in the first half and/or the second half. Verifying
the cumulative prior section includes generating a verification
IVC for the first through third pages, and comparing it with
IVC 1308. The verification IVC is Ox075EF30B Ox7F624040
Ox283225F5 OxOl C47843 OxOE344855, which contains IVC
1308. Thus, there is likely no tampering in the first through
third pages, but instead in one of the following two pages.
This may be verified by generating a verification IVC for the
third through fifth pages, and comparing it with IVC 1310.
The verification IVC for the third through fifth pages is
OxAB955A3F OxC4B617D1 Ox569EEA97 Ox2FEIBE63
Ox907ACFDD, which does not contain IVC 1310,
OxClOC415E. Alternatively, checking IVC 1410 could iso-
late the pampering to one of the fourth and fifth pages, and
checking one ofIVCs 1406 or 1408 could isolate the tamper­
ing to the fourth page (page 1400).

ment, the printed portions of the IVCs are the final 8 bytes of
the calculated IVC values. IVC 1405 represents the entire
document. IVC 1406 represents the current page (fourth
page). IVC 1407 represents the immediately prior page (third
page). IVC 1408 represents the cumulation of all pages from 30

the first page through the end of the current page (first through
fourth pages). IVC 1409 represents the immediately follow­
ing page (fifth page). IVC 1410 represents the cumulation of FIG. 15 illustrates a tampered page 1500, which is another

tampered version of the fourth page from the example five
35 page document. Page 1500 comprises a text string 1501 in a

content section 1502 and a document footer box 1503. Docu-

all pages, from the current page through the final page (fourth
and fifth pages).

Page 1400 has been tampered by adding extra material.
Specifically, text string 1401 recites "Fourth of five pages.
Extra material." instead of merely "Fourth of five pages." A
quick check for consistence between pages 1300 and 1400, of
FIGS. 13 and 14, respectively, indicates the following: IVCs 40

1305 and 1405, which represent the entire document, are
identical. IVC 1306, which appears on page 1300 and repre­
sents the current page (page 1300), is identical to IVC 1407,
which appears on page 1400 and represents the prior page
(page 1300). IVC 1309, which appears on page 1300 and 45

represents the following page (page 1400), is identical to IVC
1406, which appears on page 1400 and represents the current
page (page 1400). If any of these IVC pairs did not match, as
is described later with FIG. 15, a human observer could
identify tampering with a simple visual check. However, 50

these IVC pairs pass a consistency check, so further analysis
is needed.

ment footer box 1503 contains a page number 1504, reciting
"Page 4 of 5" and six IVCs 1505-1510. In the illustrated
embodiment, the printed portions of the IVCs are the final 8
bytes of the calculated IVC values. IVC 1505 represents the
entire document. IVC 1506 represents the current page
(fourth page). IVC 1507 represents the immediately prior
page (third page). IVC 1508 represents the cumulation of all
pages from the first page through the end of the current page
(first through fourth pages). IVC 1509 represents the imme­
diately following page (fifth page). IVC 1510 represents the
cumulation of all pages, from the current page through the
final page (fourth and fifth pages).

Similar to page 1400 of FIG. 14, page 1500 has been
tampered by adding extra material. Specifically, text string
1501 recites "Fourth of five pages. Extra material." instead of
merely "Fourth of five pages." Page 1500 differs from page
1400 in that IVC 1506 actually is a correct IVC for the
tampered text string 1501. Thus, checking IVC 1506 alone

55 will not reveal tampering. However, comparing IVC 1506,
Ox6822BA81, with IVC 1309, OxOF4FFB56, reveals a dis­
crepancy, and thus tampering to page 1500.

Several options are available for detecting the tampering to
page 1400. The quickest, if page 1400 is suspect, is to scan
page 1400 first, perform an OCR process to generate an
electronic data sequence representing text string 1401, in
which at least one of the scanning and OCR process distin­
guishes between content section 1402 and document footer
box 1403, and then generating a verification IVC for text
string 1401. Using the SHA-l, the resulting verification IVC 60

is Ox9725FE54 Ox804BB6FA Ox4062EIEF OxB8D67EA
Ox6822BA81. The value ofIVC 1406, OxOF 4FFB56, does not
match any portion of the verification IVC, and thus tampering
of page 1400 is detectable.

Another option is to scan in the entire document and inde­
pendently reproduce a verification IVC for the entire docu­
ment. This produces Ox73532398 Ox048317FB Ox883C8386

Revisiting the scenario addressed in the Changing Lanes
movie, had the signature page contained an IVC for the docu­
ment with which it was originally associated, the forgery
could have been easily detected. Additionally, had the origi-
nal signer written an IVC by hand on each page, they would
appear in his handwriting, which is more difficult to forge
than printing by a printer. To the extent that any prior art

65 method or combination of methods for rendering documents
tamper evident is practical, operable and/or obvious, but has
not yet been required by courts when compiling important

US 7,676,501 B2
33

documents, the courts are expressly choosing to allow forgery
of contestable evidence to remain a nearly trivial effort.

FIG. 16 illustrates an embodiment of a system 1600 for
creating a public database of IVCs. Illustrated system 1600
comprises an intranet 1601, although it should be understood
that other computer networks may be used. A user computer
1602 is used to create document 1603, and is coupled to
intranet 1601. Also coupled to intranet 1601 are a network
printer 1604, an email inbox 1605, a control node 1606, and

34
1613 compares the retrieves time infonnation from timing
module 1615, and using the user ID, identifies the user in
account database 1616. Other networks 1618 can comprise
another control node, which automatically interacts with
database node 1613, similarly as control node 1606. Account
database 1616 enables identification of the responsible party
to bill for database usage. Database node 1613 can operate on
either a per-use or a capacity subscription basis, similar to the
way a communication service pennits a user to contract for a
given number of messages on a monthly basis, but charges for
messages above that number.

If database node 1613 determines that a requested database
entry is from an authorized database user, it retrieves time

a server 1607, which acts as a gateway to internet 1608, using 10

a security module 1609 as a traffic gatekeeper. Control node
1606 is configured to intercept document 1603 as it is sent
from user computer 1602 to printer 1604, email inbox 1605,
control node 1606 itself or an outside email address across
internet 1611. 15 information from timing module 1615. Database node 1613

then sends the time information, and optionally, a security
code to use when submitting a database entry. Control node
1606 timestamps the generated IVC using the time infonna­
tion received from the database node or optionally, it's own

Control node 1606 comprises an IVC generator 1610, a
modification rule module 1611, and a file parser 1612. File
parser 1612 identifies the type of document 1603, generates at
least one original data sequence, selects a type-specific modi­
fication rule set from modification rule module 1611, and
calls IVC generator 1610 to produce an IVe. It should be
understood, however, that alternative configurations of con­
trol node 1606 can perfonn the same required functions.
Control node 1606 illustrates an embodiment of a page veri­
fication for printed documents (Pa VePaDTM) system.

Upon generation of the IVC, control node 1606 communi­
cates the IVC to a public electronic document dating list
(PEDDaLTM) node 1613, which hosts an IVC database 1614,
a timing module 1615, and an account database 1616. IVC
database 1614 stores time-stamped IVCs for multiple users,
and is available for public inspection. IVC database 1614
enables the author of document 1603 to prove the existence of
document 1603 as of the date that document 1603 was sent to
printer 1604, email inbox 1605, or any other destination
monitored by control node 1606. However, IVC database
1614 does not betray the contents of document 1603 to the
public, because IVC generator 1610 is a one-way function. It
should be noted that, while the illustrated embodiment shows
the use of IVCs generated in accordance with modification
rules module 1611, some embodiments ofIVC database 1614
can store prior art hash values.

Using database 1614 is then easy, due to the automated
operation of the illustrated system. A user merely needs to
send document 1603 to a printer or email inbox, such as
printer 1604 and email inbox 1605, which has been desig­
nated as a recipient node for triggering a database entry by an
administrator of intra net 1601. For example, a large company
may set up a designated printer 1604 in an engineering depart­
ment' and instruct employees to print certain technical reports

20 internal clock, and returns the IVC, along with an optional
timestamp and response security code. Database node 1613
timestamps the incoming infonnation, using infonnation
from timing module 1615, and updates IVC database 1614
with the received IVC and at least one timestamp. Submitter

25 ID infonnation may optionally be added to IVC database
1614. Database node 1613 then sends an acknowledgement
of the IVC addition, so that control node 1606 does not need
to resend the infonnation after a time-out. Database node
1613 and control node 1606 exchange fee information, and

30 database node 1613 updates account database 1616 to incre­
ment the number ofIVC submissions from the account holder
associated with control node 1606. As some point, the owner
of control node 1616 is billed for the database services. Upon
some event, perhaps IVC database 1614 reaching a certain

35 size, or the lapse of a predetennined number of days, a per­
manent computer readable medium, such an optical media,
containing a copy of IVC database 1614, is sent to at least
some of multiple contributors to IVC database. Additional
copies may be sent to other data archival service providers

40 and libraries. Older versions of IVC database 1614 may
remain available over internet 1608 for searching purposes.

At a later time, the author of document 1603 may be
accused of trade secret theft, and may wish to use document
1603 to prove prior conception of an invention. Consider, for

45 this example, the convenient case that both the author of
document 1603 and the accuser submitted IVCs to the same

to printer 1604. As an alternative example, a law firm may 50

instruct its support staff to email copies of PDF documents
filed with the US PTO to a designated email inbox1605.so
that if a document date is later contested, an independent
database can at least verify the document's existence as of a
certain date. In some embodiments, control node 1606 can 55

further determine that a received document is sent from a

version of IVC database 1614, and that the accuser kept
accurate date records of the receipt of the media. Accuser then
has possession a copy of a portion of the IVC database 1614,
which can be used to prove that document 1603 existed, at the
latest, as of the time that the accuser received the media. The
author may provide a printed paper copy of document 1603,
or a copy in another fonnat, to the accuser, along with an
assertion of the date at which document 1603 was allegedly
created, and instructions on where to find the IVC in the
accuser's own copy of the old IVC database. The accuser can

previously identified computer outside security module 1609
of server 1607, such as computer 1617, if an authorized user
is logged into intranet 1601 from a remote location. However,
control node 1606 may further avoid processing print jobs or
documents sent to printer 1604 or email inbox 1605 by unau­
thorized parties, in order to avoid triggering undesired IVC
generation and database entries.

In operation, an exemplary system may function as fol­
lows: Upon a user sending document 1603 to a monitored
destination, control node 1606 sends a message and a user
identification (ID) to database node 1613. Database node

then independently generate the IVC, even from a paper copy
of document 1603 and verify that it matches a record in IVC
database 1614. Upon this occurrence, the accuser must then

60 admit to the existence of document 1603 prior to the date that
the accuser's own internal records indicate receipt of the
media containing IVC database 1614. Other options exist
when the convenient case described above does not exist,
such as a third party performing the verification, using a copy

65 of the proper edition of the IVC database 1614 from a trusted
archival source. This option allows the verification of the date
of an important document, even without disclosing the con-

US 7,676,501 B2
35

tents outside trusted parties, and can thus provide an efficient,
reliable alternative to many intellectual property (IP) litiga­
tion procedures.

Thus, a large organization can automatically, and cost­
effectively, provide for date-proving documents generated by

36
Modified IVC generation module 1704 can output IVCs to
document 1701, for example a document footer, to an asso­
ciation/alternative channel system 1707, and/or to a compari­
son system 1708. It should be understood that modification
rules module 1705 can use different rules in each layer, select­
ing among position-based and document type-based rules.

As an example, operating on document 1701 may involve
the following process: The entire document is hashed with

its employees, which contain important IP, in a manner pre­
viously unavailable. Some embodiments of a publicly-avail­
able PaVePaDTM system, similar to control node 1606, can
interface with PEDDaLTM node 1613 to simplify automatic
generation and registration of IVCs. 10 SHA-512, a member off the SHA-2 family, for layer 1. Modi­

fication rules for layer 1, in this example embodiment, are no
modification and indicate use ofSHA-512. The output of the
layer 1 cycle from module 1704 is fed back into modification

The new paradigm can be useful to the US PTO by making
available, as prior art, an entirely new class of documents for
use in 35 U.S.C §§102 and 103 rejections of patent applica­
tions, which had previously been unavailable to the US PTO.
For example, documents appearing on websites, if properly 15

processed and entered into an IVC database, may now be
dated with certainty and thus identifiable as prior art. The new
paradigm enables rendering a new class of documents
tamper-evident, and thus date provable, such as printed docu­
ments and even documents placed on the internet. That is, a 20

document placed on the internet, even by an untrustworthy
party can be now be proven to have existed on a certain date
prior to being viewed or cited as a reference, and uumodified
since that date. This is a significant development, and a sur­
prising result of violating fundamental security paradigms. 25

The failure of others to provide for rendering certain classes
of documents tamper evident and date provable, leaving them
unusable for important functions, is added evidence of the
novelty of the newly introduced paradigm.

rules module 1704, and triggers an increment in layer counter
1706. Layer 2 uses SHA-l, with bytes excluded from the
original document, indexed according to the SHA-512 mes-
sage digest. For example, if the first byte of the layer 1
message digest is a 5, the 6th byte of the original document is
excluded when generating the modified data sequence. In this
example, zero-based indexing is used, so an index of 0 is the
first element. It should be understood, however, that alterna-
tive arrangements can be used, such as not excluding a byte of
a message digest byte used for indexing is a O. If the second
byte of the layer 1 message is ahexE, which is decimal 14, the
15th byte of the original data sequence, following a reference
point, is excluded when generating the modified data
sequence. The counting point for determining the second byte
to exclude can be immediately after the first non-excluded

An example IVC database entry includes the following 30

1024 bit, 1 Kb, sequence for a document to be verified in
digital format, not subject to document-type exclusion rules:

byte, or start again at the 17th byte. This process iterates,
repeating the use of the message digest, if document 1701 is
longer than the message digest. If the counting restart points
are based on the position of an excluded byte, then the number
of bytes excluded will be determined by the values of the Bits 1-512: the SHA-512 message digest of the entire docu­

ment;

Bits 513-672: the SHA-l message digest, with position-based
exclusion rules using the SHA-2 message digest for exclusion
indexing;

Bits 673-832: the SHA-l message digest, with further posi­
tion-based exclusion using the prior SHA-l message digest
for exclusion indexing;

Bits 832-1024: timestamps, IVC generation indicia including
software version and rule options, and other administrative
data to facilitate database searching and/or IVC recreation. It
should be understood, however, that document-type exclu­
sion rules may be used, as well as other IVC generation
algorithms, and a different number of IVC layers.

35 bytes in the SHA-512 message digest, with lower values
causing more byte exclusions, due to short counting intervals.
If the counting position starts over every 16 bytes, then one in
16 bytes of document 1701 will be excluded when generating
the modified data sequence. It should be understood, how-

40 ever, that alternative methods of chaining the IVC generating
functions can be used.

Further describing the example embodiment, SHA-l is
used for layer 2. One reason for the use of a different algo­
rithm is that ifSHA-512 is later found to have an exploitable

45 weakness, the use of a different hash function can act as a
safety net. The above-described process is repeated for layer
3, using the message digest from layer 2 to further modify the
sequence used in layer 2. Alternatively, the layer 3 process
could modifY the original data sequence. This is different than FIG. 17 illustrates a functional block diagram of an

embodiment of a document integrity verification system
1700. System 1700 is illustrated as an iterative system, and is
suitable for generating original IVCs to render a document
tamper evident, for generating verification IVCs to test for
integrity, and can be used to check two documents for differ­
ences, even if neither is trusted. As illustrated, system 1700 is 55

capable of performing methods 100-1000, if representing an
apparatus, but may be considered a generalization of methods
100-1000, ifviewed as a method flowchart.

50 merely applying the multiple hash functions to an unmodified
data sequence. By modifYing the data sequence with the
output of one hash function, the layers become intertwined,
complicating the calculations needed to find a compensating
set of changes.

FIG. 18 illustrates a diagram of an embodiment of a docu-
ment integrity verification apparatus 1800. Apparatus 1800
comprises a computing apparatus 1801 coupled to printer
1104, which prints document 1105. Computing apparatus
1801 is configured to perform at least a portion of any of System 1700 comprises a document 1701, which inter­

faces with a section selection module 1702 and a type iden­
tification module 1703. Section selection module 1702 gen­
erates an original data sequence that is to be rendered tamper
evident or tested for tampering using modified IVC genera­
tion module 1704. Modified IVC generation module 1704
receives input from modification rules module 1705, which in
turn, receives input for selecting specific modification rules
from type identification module 1703 and layer counter 1706.

60 methods 100-1000, and the functions of control node 1606
and system 1700. In some embodiments, printer 1104 is a
multi-function device, capable of scarming printed docu­
ments to facilitate OCR. Computing apparatus 1801 com­
prises a CPU 1802, although t should be understood that a

65 plurality ofCPUs may be used within computing apparatus
1801. Computing apparatus 1801 further comprises memory
1803, which is coupled to CPU 1802. Memory 1803 may

US 7,676,501 B2
37

comprise volatile random access memory (RAM), non-vola­
tile RAM, and other computer-readable media, such as opti­
cal and magnetic media.

Memory 1803 comprises a digital representation of a docu­
ment, for example document 11 OS, a modified IYC generator
1805, and a document processor 1806. In some embodiments
document processor can parse digital representation 1804 to
classify document type-based content to facilitate data
sequence modification. Examples previously described
include classifYing bytes as either printable data or non-print- 10

able data for word processing type documents, and as execut­
able CPU instructions or unreachable instructions in a binary
executable file. Modified IYC generator 1805 comprises data
sequence modifier 1806, IYC generator 1807, and modifica­
tion rules 1808. In some embodiments, data sequence modi- 15

fier 1806 and IYC generator 1807 comprise instructions
executable by CPU 1802, along with supporting data. In some
embodiments, data sequence modifier 1806 and IYC genera-
tor 1807 comprise circuitry capable of performing computa­
tions and processing, such as a field programmable gate array 20

(FPGA) and/or an application specific integrated circuit
(ASIC).

As used with any of the methods or systems described
herein, a verification standard is an output of an integrity
verification function that is calculated when the document is 25

38
be printed on the check. That is, selected information from the
check is combined with secret information, not in the docu­
ment or otherwise ascertainable, to produce a larger data set
than the data set that is being protected. This larger data set is
encrypted to produce the encrypted code, using a reversible
algorithm, i.e., one that allows full recovery of the entirety of
the protected information. Thus, Sandru's encrypted code
must be long enough to contain all of the information to be
verified, plus the additional secret information.

When the check is presented for payment, a validator, such
as bank or check clearing house, must employ a verification
system having a copy of the encryption key to generate a
second control code. The check fails verification if the first
and second control codes are not identical. Sandru points out
that the encrypted information can only be decoded or vali­
dated by a party possessing a key corresponding to the data
key necessary to decode or validate the encrypted informa­
tion. Sandru's method is not tolerant of any document scan­
ning or OCR errors, as is the present invention, but is instead
likely to be quite fragile and susceptible to false alarms of
document tampering, as described in the previous descrip-
tions of prior art.

Although the invention and its advantages have been
described above, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the claims.
Moreover, the scope of the present application is not intended
to be limited to the particular embodiments described in the
specification. As one of ordinary skill in the art will readily

30 appreciate from the disclosure, alternatives presently existing
or later to be developed that perform substantially the same
function or achieve substantially the same result as the cor­
responding embodiments described herein may be utilized
according to the invention. Accordingly, the appended claims

in a baseline reference condition. That is, a verification stan­
dard is what a subsequent output of an integrity verification
function is compared against, in order to determine whether
the document has changed from the baseline reference con­
dition. A test value is the output of a hash function that is an
integrity verification function that is calculated in order to
determine whether the document has changed from the base­
line reference condition. The test value is created at a different
time or location from a verification standard. A match
between a verification standard and a test value is an indica­
tion that the corresponding portion of the document is
unchanged. In this usage, a different time or location can
include any significant difference, no matter how small. In
order for a difference to be significant, there need only be a
possibility that at least one element of the document could 40

have changed. An integrity decision includes a comparison
between verification standards and test values for a document

35 are intended to include within their scope such alternatives.

or excerpt of a document. The comparison may be as simple
as a check for equality, but could also be more involved. An
integrity decision could be either binary, such as "changed 45

versus unchanged," or else diagnostic. A diagnostic decision
would attempt to indicate the locations and degrees of
changes. As used herein, OCR process is intended to include
any process for generating of textual information from
graphical information. In some embodiments, generating a 50

modified data sequence from an original or verification data
sequence may comprise scrambling the elements according
to a deterministic algorithm.

Prior art methods for printing an encrypted code on the face
of negotiable documents, such as checks, are described in 55

U.S. Pat. Nos. 6,792,110; 6,549,624; 6,233,340 by Sandru.
The methods described by Sandru enable documents to be
self authenticating, by encoding certain data in a seal on the
face of a check. These prior art methods may be easily dis­
tinguished from the current invention. 60

The methods taught by Sandru require that additional
secret information, not found in the document or otherwise
discoverable, be used in both the generation and the verifica­
tion of the encrypted code. Specifically, Sandru's methods
employ a secret key cryptographic scheme, which is highly 65

dependent on any variations in the data, to encrypt monetary
value information and thereby generate a first control code to

What is claimed is:
1. A computer-implemented document integrity verifica­

tion method comprising:
receiving an image format document into a computer read­

able medium, wherein the image format document rep­
resents a printed document containing a first original
integrity verification code (lYC);

generating a first verification data sequence from the image
format document from a section of the document that
excludes the first original IYC, wherein generating a first
verification data sequence comprises performing an
optical character recognition (OCR) process on the
image format document;

generating a first modified verification data sequence from
the first verification data sequence in accordance with a
set of modification rules, wherein at least one element of
the first verification data sequence, between the first and
final elements of the first verification data sequence, is
modified in the first modified verification data sequence;

generating a first verification IYC, wherein generating a
first verification IYC comprises performing a one-way
operation on the first modified verification data
sequence, and wherein the modification rules render
tampering undetectable, by a comparison of the first
verification IYC with the first original IYC, for at least
one element within the first verification data sequence;

comparing the first verification IYC with the first original
IVC; and

reporting an indication of tampering to the printed docu­
ment, responsive to the comparison of the first verifica­
tion IYC with the first original lYe.

US 7,676,501 B2
39

2. The method of claim 1 wherein the image fonnat docu­
ment comprises a portable document fonnat (PDF) docu­
ment.

3. The method of claim 1 wherein the image fonnat docu­
ment comprises an image of the first original IVe.

4. The method of claim 3 wherein generating a first verifi­
cation data sequence further comprises:

identifYing the image of the first original IVC in the image
format document; and

excluding the first original IVC from the first modified 10

verification data sequence.
5. The method of claim 3 wherein a separate OCR process

is perfonned on a portion of the image fonnat document
containing the image of the first original IVe.

6. The method of claim 1 wherein the first modified veri- 15

fication data sequence is shorter than the first verification data
sequence.

7. The method of claim 1 wherein modifYing an element of
the first modified verification data sequence comprises omit­
ting the element from the first modified verification data 20

sequence.
S. The method of claim 1 wherein modifYing an element of

the first modified verification data sequence comprises sub­
stituting the element with a different element in the first
modified verification data sequence.

9. The method of claim 1 wherein the modification rules
require modification of at least one element which does not
correspond to a printed element in the printed document.

25

10. The method of claim 1 wherein the modification rules
require that at least one element, which does correspond to a 30

printed element in the printed document, appear in the first
modified verification data sequence without modification.

11. The method of claim 1 wherein the modified element
comprises a displacement element.

40
12. The method of claim 1 further comprising:
receiving the first original INC from a user input window.
13. The method of claim 1 further comprising:
identifYing a second original IVC;
identifYing a portion of the image fonnat document repre­

sented by the second original IVC;
generating a second verification data sequence from the

identified portion of the image fonnat document;
generating a second modified verification data sequence

from the second verification data sequence in accor­
dance with the modification rules, wherein at least one
element of the second verification data sequence,
between the first and final elements of the second veri­
fication data sequence, is modified in the second modi­
fied verification data sequence;

generating a second verification IVC, wherein generating a
second verification IVC comprises performing a one­
way operation on the second modified verification data
sequence;

comparing the second verification IVC with the second
original IVC; and

reporting an indication of tampering to the printed docu­
ment, responsive to the comparison of the second veri­
fication IVC with the second original IVe.

14. The method of claim 13 wherein the second verification
data sequence is a subset of the first verification data
sequence.

15. The method of claim 13 wherein the second verification
data sequence and the first verification data sequence repre­
sent different pages of the image format document.

16. The method of claim 15 wherein the first original IVC
and the second original IVC appear on a same page of the
document.

* * * * *

